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Abstract
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dential solar panels, 2) power-plant-level data on hourly production and emissions, and
3) a state-of-the-art air pollution model. The current subsidies lead to severe spatial
misallocation. National funding for subsidies under the current system exceeds the
unconstrained optimum by over 70%. Our results suggest that there could be large
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1 Introduction

Governments around the world are more likely to subsidize technologies that lead to envi-

ronmental benefits than they are to tax environmental damages (Borenstein, 2012). In the

case of solar panels, these environmental benefits vary geographically. All else equal, the

environmental benefits of solar panels are likely to be the largest in sunny areas and areas

where high-polluting power plants would otherwise produce electricity. This spatial variation

in environmental benefits suggests a rationale for spatially di!erentiated subsidies.

This paper uses a structural model of electricity production and household demand for

rooftop solar panels to study how subsidies should optimally vary across space. Heterogeneous

households across the country choose the number of solar panels to install, accounting for

the installation cost, the lifetime value of the electricity produced and subsidies received,

and the nonpecuniary costs and benefits of installation.1 Households can also purchase

electricity produced by a system of power plants. Individual power plants vary in the extent

to which their production leads to environmental damages, their production capacity, and

their location, which dictates how the grid transmits the plant’s electricity across geographic

regions.

Residential solar installations reduce environmental damage by decreasing fossil-fuel power

plants’ electricity production. Therefore, panels installed in areas with more sunlight have

greater environmental benefits because they lead to larger decreases in electricity produced

by these plants. The environmental benefits of solar panel installations also vary geographi-

cally because of di!erences in the distribution of technology employed by power plants across

space. Panels installed in areas where environmentally unfriendly plants would otherwise

produce electricity will be more beneficial than panels installed in areas with cleaner plants.

These environmental benefits are not internalized by the household, thus suggesting a role

for government intervention. The primary tool currently employed by US policymakers to

deal with this externality is a system of federal and state subsidies for solar panels. We

use the model to solve for the nationally-optimal subsidies and quantify the benefits of

switching from the current system of subsidies to the optimal subsidies.2 Doing so requires

understanding how solar panel installation rates and the damages associated with electricity

production would change in response to alternative subsidy schemes. Therefore, our approach

1See Borenstein (2017) for a detailed discussion of the private benefits of solar installation in the case
of California. See Borenstein and Bushnell (2022) for a discussion of how these factors shape the spatial
distribution of solar panels.

2We focus on the optimal choice of subsidies for rooftop solar panels and do not allow for other types of
government intervention, such as pricing the externality via a carbon tax. See Eichner and Runkel (2014) for
an argument for why countries may choose to subsidize green energy production even when they have access
to carbon taxes.
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is to estimate a quantitative version of our model to calculate the optimal policies and the

associated benefits.

Our primary data source is the DeepSolar Project (Yu et al., 2018), a dataset of the uni-

verse of residential solar panel installations in the contiguous US. Deepsolar uses a machine-

learning framework to identify solar panel installations from satellite imagery. We supplement

these data with data from Google Project Sunroof, another satellite-imagery-based dataset

that provides information on solar irradiance across the US and on the number and size

of rooftops suitable for solar panel installations. Combined, these two datasets provide the

distribution and size of solar panel installations as well as solar irradiance and space suitable

for solar panels across the US. We utilize these novel data sources to estimate the household

component of the model via indirect inference, thereby providing the first estimated model

of solar panel demand across the US. To facilitate identification, we utilize a border disconti-

nuity approach, which exploits variation in subsidies on either side of state borders. Though

sparsely parameterized, our household installation model matches the spatial distribution of

installations well. We also show that our estimates are consistent with quasi-experimental

evidence on the responsiveness of installations to solar rebates.

To model power plants, we develop a novel policy function approach that maps electricity

demand and renewable production across the country to plant-level electricity production

and emissions. Our approach allows for endogenous changes in power plants’ production

profiles in response to electricity demand and renewable production over the day and year.

We estimate these policy functions using Open Grid Emissions (OGE) data, which provide

hourly production and emissions data covering nearly every power plant in the United States.

We show that the estimated model matches the data’s temporal and spatial distribution of

electricity generation. We translate these emissions into environmental damages using AP3,

a state-of-the-art integrated air pollution model.

Our estimated model of solar panel demand and electricity production provides a frame-

work to calculate the spatial distribution of installations, environmental benefits of solar

panels, and government cost of subsidies under counterfactual subsidy schemes. We first use

this framework to solve for the nationally-optimal cost-neutral subsidy reforms and quantify

the spatial misallocation caused by the current subsidy system. Our main result is that the

current subsidy system leads to a severe misallocation of solar panels across space. Consider

Washington, for example, a state where current subsidies are high even though sunlight is

low and households receive marginal energy from relatively environmentally friendly power

plants. We find that solar panels in Washington are over-subsidized by 100% relative to

the nationally-optimal subsidy system, leading to 120% greater installations than optimal.

Decreasing subsidies in Washington would lead to large decreases in fiscal costs with small
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decreases in environmental benefits. On the other hand, in West Virginia, where current

subsidies are low and the environmental benefits of solar installations are high, we find that

panels are under-subsidized by nearly 70%, leading to installations that are 60% lower than

optimal. More generally, panels are under-allocated by roughly 30% in the Midwest and

South and over-allocated by nearly 80% in the Northeast.

We find that the misallocation caused by the current system of subsidies leads to sub-

stantial environmental costs. Switching from the current subsidies to the welfare-maximizing

subsidies leads to a 11.5% increase in aggregate environmental benefits—environmental dam-

ages decrease by approximately the same amount as a 11.5% increase in the productivity of

every rooftop solar panel in the US. Switching to subsidies set by a planner aiming to min-

imize environmental damages rather than maximize welfare would lead to a 12.6% increase

in aggregate environmental benefits.

Next, we calculate nationally-optimal subsidies when the government does not face an

externally set budget constraint. The optimal unconstrained subsidies are significantly lower

than current levels in the Northeast and West, but slightly higher than current subsidies

in the Midwest and South. Nationally, total installations under the optimal subsidies are

roughly 20% less than the current amount, leading to a decrease of 43 million dollars in

annual environmental benefits relative to the current level. However, the accompanying 162

million dollar annual decrease in government costs thoroughly outweighs the decrease in

environmental benefits. Put another way; the optimal unconstrained subsidies achieve over

80% of current environmental benefits at less than 60% the current cost. Our results suggest

rooftop solar subsidies not only deviate from the optimum in how they vary across space but

are also excessively generous in general.

Finally, we compare the e!ects of marginal subsidy changes around the current system of

subsidies. We find large di!erences in the cost-e!ectiveness of subsidy increases across states.

For example, the environmental damages o!set per dollar of government funds associated

with subsidy increases in West Virginia are over 3.5 times greater than the damages o!set

per dollar of subsidy increases in Washington. These results highlight that changes around

the current system of subsidies could lead to decreases in both environmental damages and

fiscal costs.

The remainder of the paper consists of various extensions and robustness checks. We

analyze the sensitivity of our results to 1) alternative values of the marginal cost of public

funds, 2) alternative specifications of household preferences and discounting, 3) accounting

for line losses in transmitting electricity from plants to homes, 4) accounting for transmission

constraints, 5) the introduction of improved electricity storage technology, and 6) changes in

utility-scale renewable electricity production. We find that the optimal system of subsidies
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remains qualitatively the same across these specifications. Quantitatively, our results suggest

that optimal unconstrained subsidies will be even lower in the future as utility-scale renewable

electricity production continues to expand.

It is important to caveat that residential solar subsidies may be associated with addi-

tional benefits that we do not model in this paper. Solar subsidies may increase innovation

and technological growth via increased R&D or learning-by-doing (Benthem, Gillingham,

and Sweeney, 2008; Goulder and Mathai, 2010; Bollinger and Gillingham, 2019; Gerarden,

2023).3 Further, numerous studies have found that solar panel suppliers hold considerable

market power (Gillingham et al., 2016; Pless et al., 2017; Pless and Van Benthem, 2019).

Subsidies may help to alleviate the distortions caused by this market power (Dorsey, 2024).

Solar installations may encourage additional solar installation via peer e!ects (Bollinger and

Gillingham, 2012; Bollinger et al., 2022) and may reduce reliance on the transmission grid,

thereby reducing grid congestion and the need for costly investments in the transmission grid.

Although not accounted for, these benefits would need to be substantial in order to justify

current subsidy spending levels.

Further, the goal of this paper is to quantify nationally-optimal subsidies. Specifically,

we focus on a social planner who maximizes national welfare, accounting for aggregate envi-

ronmental damages and national fiscal costs. In reality, many solar subsidies are set by state

governments who face state-level budget constraints and may be motivated to create local

jobs or stimulate the local economy via “green multipliers” (Popp et al., 2020; Hasna, 2021;

Batini et al., 2022). In our analysis, we abstract away from these state-level incentives and

constraints. Our results quantify the theoretically optimal distribution of funds across space

and the geographic misallocation associated with the suboptimal current system of subsidies.

Our paper is most closely related to several papers which use model-based approaches to

quantify the e!ectiveness of various types of subsidies on inducing solar panel installations

(e.g., Burr (2014), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger,

Pavanini, and Radulescu (2022)). These papers use rich, dynamic models to study the trade-

o!s associated with various subsidy schemes. Of these, our paper is closest to Feger, Pavanini,

and Radulescu (2022), which studies optimal installation subsidies and energy tari!s in a

model with household energy consumption and solar panel demand.4 While all these papers

focus on solar panel installations, we provide a framework that can additionally quantify the

environmental benefits of solar panel installations, arguably the main reason these subsidies

3Learning by firms only constitutes a positive externality if it is non-appropriable and therefore not
internalized by the firm. Bollinger and Gillingham (2019) find that non-appropriable learning-by-doing only
leads to small learning spillovers for solar panel installers in California.

4Feger, Pavanini, and Radulescu (2022) quantify the cost-minimizing and welfare-maximizing subsidy
and tari! schemes subject to a network financing constraint and a solar energy target. They also allow the
government to have a preference for redistribution, something we refrain from doing in our paper.
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exist. As such, we are the first paper in this literature to quantify the trade-o!s between

the environmental benefits and fiscal costs of residential solar subsidies. We additionally

contribute by quantifying the spatial misallocation due to current subsidy schemes through

our analysis of how these subsidies should optimally vary across space. As discussed in the

following paragraph, the reduced-form literature has emphasized the importance of spatial

di!erences in the environmental benefits of solar panels. However, no quantitative research

has incorporated these spatial di!erences in a study of optimal subsidy design.

This paper is also related to a literature estimating the extent to which the marginal ben-

efits of renewable energy investments vary geographically (e.g., Holland and Mansur (2008),

Siler-Evans et al. (2013), Gra! Zivin, Kotchen, and Mansur (2014), Holland et al. (2016),

Millstein et al. (2017), Callaway, Fowlie, and McCormick (2018), Holland et al. (2020), Brown

and O’Sullivan (2020)). In particular, this paper is similar to Borenstein and Bushnell (2022),

who relate estimates of the marginal social cost of electricity production to the spatial dis-

tribution of solar panels in the US, and to Sexton et al. (2021), and Lamp and Samano

(2023), who study the marginal benefits of solar panel installations and calculate the benefits

of reallocating panels across space.5 While these papers establish that the current spatial

distribution of solar panel installations does not maximize environmental benefits, they do

not model demand for solar panels and, therefore, do not quantify how installations respond

to various subsidy schemes. The goal of our paper is to quantify the extent to which gov-

ernment policy causes this misallocation and solve for the system of subsidies that remedies

this misallocation. Our contribution is, therefore, to build and estimate a structural model

of solar panel demand and electricity production, which we use to quantify the e!ects of

alternative subsidy schemes on the distribution of solar panel installations and calculate the

resulting environmental benefits and fiscal costs. Specifically, we provide the first estimated

model of solar panel demand across space in the US. We also develop a novel, tractable

approach to modeling power plant production and the associated emissions over space and

time. This approach involves directly modeling how individual plants’ electricity production

and emissions endogenously respond to changes in solar and other renewable production.

Finally, this paper is related to several empirical papers which estimate the elasticity of

solar panel installations with respect to subsidies. We discuss these papers in Section 5.1.3.

We use the estimates from these papers to evaluate the performance of our estimated model.

5In the sustainability literature, Tibebu et al. (2021) calculate the subsidies which maximize environmental
benefits less government cost at the national and state level. Their analysis does not account for household
utility and therefore omits a key component of the social benefit of subsidies. They also do not model the
household decision to install solar panels but instead model solar installation rates as following a normal
distribution in the net present value of installation.
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2 Model

We combine a model of household solar panel demand with an electricity production model.

Households are distributed geographically across the United States, and states vary in their

electricity prices, installation prices, and the set of subsidies for solar panels they o!er. Within

states, households vary in their local solar irradiance (sunlight), the amount of space they

have for potential solar panels, and their preferences over solar panel installation. Households

choose the number of solar panels to install, accounting for electricity and installation prices,

solar panel subsidies, and their individual preferences for installing solar panels.

In addition to residential solar panels, central generation power plants produce electricity.

Power plants di!er in the extent to which their electricity production leads to environmental

damages and their location, which determines how the electricity they produce is distributed

across the country. Further, power plants face capacity and non-negativity constraints and

vary in the order in which they are dispatched, implying that some power plants will only

operate when demand is su”ciently high while others will operate even when demand is low.

2.1 Households

Households, indexed by i, are endowed with income yi and N̄i spaces they can potentially

use for solar panels. Household i has access to a solar panel technology that can produce a

stream of solar energy of {Ait}Tt=0
over the lifetime of the panel for each panel they choose to

install. In practice, we will think of t as indexing hours and set the lifespan of a solar panel to

25 years.6 We can think of this solar technology as reflecting the intermittent sunlight profile

at a given household’s residence, accounting for the depreciation of solar panel e”cacy over

time. Let j index the state in which the household lives.

Households choose whether or not to install solar panels, mi → {0, 1}, the number of

panels conditional on installation, Ni →
(
0, N̄i

]
, and how much electricity to consume each

period. Specifically, households choose a sequence of electricity usage {eit}Tt=0
, where eit gives

household i’s energy consumption in period t. We assume the household pays a constant price

of pj for all electricity purchased.7 Let r denote the real interest rate and let ei =
∑T

t=0

eit
(1+r)t

denote the discounted sum of energy consumed, such that pjei gives the present discounted

cost of electricity consumed.

6This is a standard value of the average useful life of solar panels (see e.g., Xu et al. (2018), Chowdhury
et al. (2020), or Sodhi et al. (2022)).

7We assume that electricity prices are constant over time. While electricity prices change over time, there
is evidence that consumers do not correctly forecast the extent to which prices change over time and expect
future prices to be similar to current prices (Hughes and Podolefsky, 2015; Anderson, Kellogg, and Sallee,
2013). Further, we assume these electricity prices are fixed across counterfactuals and, therefore, abstract
from the general equilibrium e!ects of subsidies on electricity prices.
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If a household chooses to install solar panels, they pay the cost of installation of pInsj (Ni),

which is a function of Ni, the number of panels they choose to install. The installation cost

function pInsj (·) can vary nonlinearly in Ni and is allowed to vary by state j.8 Households

can use electricity generated by solar panels to power their home or can sell it back to the

grid. Assume, for now, that households can sell back to the grid at the price of electricity

purchased, pj, as is the case for households in states with net metering. We discuss how we

model households without net metering in Online Appendix B.1.9 Letting Ai =
∑T

t=0

Ait

(1+r)t

denote the discounted sum of electricity production, we can write the present discounted

value of energy produced by each solar panel for household i as pjAi.

Households receive subsidies for solar installations. We allow for three types of solar panel

subsidies that capture the majority of state and federal subsidies in the US. First, households

can receive a cost-based subsidy sCost

j , which pays a percentage of the solar installation cost,

similar to the federal investment tax credit. Second, households can receive a production-

based subsidy of skWh

j for each kWh of electricity produced by their solar panels, similar to

solar renewable energy certificates. Finally, we allow for a per-panel subsidy sPanelj , such as

subsidies that pay per kilowatt of solar capacity installed.

We can thus write the household’s budget constraint as

ci + pj (ei ↑miNiAi)︸ ︷︷ ︸
Net cost of electricity

+mi

(
1↑ sCost

j

)
pInsj (Ni)︸ ︷︷ ︸

Net cost of installation

= yi + miNiAis
kWh

j︸ ︷︷ ︸
kWh Subsidy

+ miNis
Panel

j︸ ︷︷ ︸
Per-Panel Subsidy

(1)

where ci is consumption of the numeraire good.10

Households have the following quasilinear utility function

ci + ωi
(
{eit}Tt=0

)
+miεi (Ni) ,

where εi (Ni) is a strictly concave function which gives the nonpecuniary benefit of adding

Ni solar panels for household, and ωi
(
{eit}Tt=0

)
is a function which gives the lifetime utility

of electricity usage. The function εi (·) captures inconvenience costs and any other individual

preferences for installing solar panels.

Note that the choice of electricity consumption does not depend on the household’s choice

to install panels. Thus, we can think of household optimization as a two-step process. First,

8We assume a nonlinear pricing function to allow for the possibility that there is a fixed cost associated
with installing a positive number of panels.

9In 2017, 39 states mandated net metering policies. Idaho did not have a state net-metering policy, but
each of the state’s three investor-owned utilities had a net-metering policy. Five other states in our sample
have distributed generation rules other than net metering.

10We can think of ci and yi as the present values of consumption and income over time, respectively.
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the household chooses electricity use, {eωit}
T
t=0

, then decides whether to install solar panels

and the number of panels conditional on installation. In this second stage, we can rewrite

the household’s optimization problem as a choice of Ni and a discrete choice of mi:

Vi = max
Ni,mi→{0,1}

mi [µij (Ni) + εi (Ni)] . (2)

where

µij (Ni) = NiAi

(
pj + skWh

j

)
︸ ︷︷ ︸
Total electricity value

↑
(
1↑ sCost

j

)
pInsj (Ni)︸ ︷︷ ︸

Net installation cost

+ Nis
Panel

j︸ ︷︷ ︸
Per-panel subsidy

(3)

denotes household i’s net monetary benefit of installing solar panels.11 Let mω
i denote the

household’s optimal installation choice and let Nω
i denote the optimal number of panels

conditional on installation.

From equations (2) and (3), we can see that di!erent types of subsidies will di!er in the

distribution of households they induce to install panels. Households in sunny areas (high Ai)

are more likely to respond to the production subsidy skWh

j , while households in areas with

high installation costs are more likely to respond to the cost subsidy sCost

j , for example.12 As

we show in Section 2.3, the planner chooses the nationally-optimal set of subsidies accounting

for the fact that di!erent households are marginal with respect to each type of subsidy.

Before proceeding, it is important to highlight that several features of the solar panel

market are not included in our model. First, our model does not include a role for peer

e!ects, which Bollinger and Gillingham (2012) and Bollinger et al. (2022) find can influence

households’ decisions to install solar panels.13 Second, De Groote and Verboven (2019) find

that households heavily discount future benefits associated with solar installations. We in-

stead assume households discount future subsidy payments according to the market discount

rate. We consider a version of our model in which households more heavily discount future

subsidy payments in Section 7.2. Third, we assume a partial equilibrium setting where in-

stallation costs are given exogenously and do not change in response to changes in subsidies.

This partial equilibrium setting implies that increases in subsidies decrease the e!ective costs

paid by consumers dollar for dollar. If the inverse supply curve for solar installations in our

model were upward sloping, then increasing subsidies would also increase the equilibrium

11Note that we have dropped a constant representing the household’s utility from electricity use and costs
but does not a!ect the decision to install solar panels.

12Note that electricity prices and production subsidies have the same e!ect on the monetary benefits from
installation for households in states with net metering.

13Our estimation strategy uses tract-level data to estimate the e!ects of solar subsidies on installations.
Tract-level responses to subsidies include both the direct e!ect of subsidies on installations as well as the
e!ect of within-tract peers on total installations. Therefore, the empirical elasticities we use in our analysis
incorporate the e!ects of peer e!ects on installations. However, we do not model these peer e!ects directly.
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price charged by installers, thereby changing the price faced by the consumer.14

Finally, our paper assumes prices and subsidies are fixed over time and, therefore, ab-

stracts away from the substantial changes in residential solar subsidies that have occurred

over the past 20 years in the United States (Barbose and Darghouth, 2019). We view our

model of solar installations as capturing the long-run installation decisions of households who

face a given set of subsidies. As such, our model is not appropriate for analyzing the short-run

e!ects of policy changes nor for studying the transition path between two policy regimes. We

discuss the implications of assuming constant prices for estimation and quantitative results

in Section 7.8.

2.2 Electricity Production

2.2.1 Background

Before proceeding to the model, we give a brief overview of electricity production in the US.

The electricity sector in the US is highly regulated and does not operate like a traditional

market. Each of the around 10,000 central generation power plants in the US is overseen

by a balancing authority, an entity tasked with matching electricity supply and demand by

managing production from individual plants and trading with other balancing authorities.

Transmission of electricity between balancing authorities disproportionately occurs within

larger regions called NERC regions, each constituting a relatively closed market of balancing

authorities. Transmission across regions does occur, but this inter-regional transmission

occurs almost exclusively within interconnections, a geographic unit larger than a region.

There are three interconnections in the US: Eastern, Western, and Texas.

We can divide power plants into those that are dispatchable and those that are nondis-

patchable. Nondispatchable power sources are those whose output cannot be easily controlled

in response to fluctuations in electricity demand and generally produce when available, such

as wind and solar. These energy sources are generally intermittent, meaning their productive

capacity fluctuates over time in response to environmental factors, e.g., sunlight and wind.

Nondispatchable power plants generally do not produce pollutants or greenhouse gases.

On the other hand, balancing authorities can control production by dispatchable power

plants to satisfy electricity demand. The production profile of a given dispatchable plant is

determined by its position in the dispatch curve—the order at which balancing authorities

dispatch power plants to satisfy di!erent electricity demand levels.15 This implies that a

14See Reguant (2019) for a model-based exploration of how various renewable energy policies di!erentially
a!ect the prices faced by consumers.

15Power plants’ variable cost of production generally determine the dispatch curve. Power plants with the
lowest variable costs (often nuclear and hydroelectric) typically satisfy low demand. Meanwhile, plants with
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power plant’s production is not simply proportional to demand—some power plants operate

continuously throughout the day while others only operate at peak levels of demand. As

such, the set of marginal power plants, and therefore the marginal benefits to residential

solar installation, vary geographically and within location as a function of demand that must

be satisfied by dispatchable plants.

2.2.2 Model: Electricity Production

Within the model, three sources supply electricity: 1) residential solar, 2) nondispatchable

plants, and 3) dispatchable plants.16 Nondispatchable units are assumed to operate at full

capacity conditional on environmental conditions (e.g., sun and wind) and conditional on total

demand exceeding the amount produced by these nondispatchable generators.17 Therefore, as

long as demand exceeds the amount produced by nondispatchable sources, the production by

these power plants is independent of demand and production by other plants. Alternatively,

the production by dispatchable units depends on excess demand remaining after production

by residential solar and nondispatchable plants.

Residential Solar and Nondispatchable Plants Let R index NERC regions.18 Total

residential solar production in region R in a given hour t is the sum of energy produced

by residential solar panels, ESolar

Rt =
∫
i→IR mω

iN
ω
i Aitdi, where IR is the set of households who

reside in region R. Similarly, total production by nondispatchable plants in region R in

time t is given by ENonD

Rt =
∑

k→KR
yNonD

kt , where yNonD

kt denotes electricity production by

nondispatchable power plant k in time t, and KR is the set of nondispatchable plants in

region R. yNonD

kt is allowed to vary fully by power plant k and time t, reflecting di!erences

in environmental factors across plants and over time, and we assume it is independent of

demand and production from other power plants.

higher variable costs (such as gas-fired plants) begin operating only when electricity demand is su”ciently
high.

16We assume the distribution of power plants and the characteristics of the grid are exogenous. In reality,
a large change in residential solar production may lead to the entry and exit of generators and changes in
the organization of the electricity grid. In Section 7.6, we analyze the robustness of our results to alternative
assumptions about the distribution of power plants. See Holland, Mansur, and Yates (2022) for a model which
includes endogenous entry and exit of generators and storage capacity. See Arkolakis and Walsh (2022) for
a model with endogenous grid formation.

17In this case, we assume production of nondispatchable plants is curtailed such that supply does not
exceed demand.

18We will assume 7 NERC regions in our quantitative analysis. O”cially, the North American Electric
Reliability Corporation (NERC) divides the US into 6 regional entities. Following Holland et al. (2016), we
separate California from the WECC region, leaving us with 7 regions. We discuss how we define the regions
in Online Appendix A.7.
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Dispatchable Plants To capture the centralized manner by which balancing authorities

dispatch power plants to satisfy electricity demand, we model dispatchable plants’ behavior

via policy functions that map excess demand to plant-level production. Let LoadRt denote

the total electricity demand in region R in time t, and let ELoadRt = LoadRt↑ENonD

Rt ↑ESolar

Rt

give the electricity demand in region R that is not satisfied by residential solar and nondis-

patchable plants. We write production by dispatchable plants as a reduced-form function of

excess demand across regions, subject to non-negativity and capacity constraints. Letting

yDisp

kt denote production by dispatchable plant k in time t, we specify

yDisp

kt =






0 if fk (ELoadt, ϑkt) ↓ 0

fk (ELoadt, ϑkt) if 0 < fk (ELoadt, ϑkt) < ȳk

ȳk if fk (ELoadt, ϑkt) ↔ ȳk

, (4)

where ȳk is power plant k’s nameplate capacity, the maximum productive capacity of the

plant, ELoadt is the vector of excess loads in each region at time t, and fk (ELoadt, ϑkt) is

a plant-specific function of excess load across regions and a cost shifter ϑkt.19 We allow the

function fk (·) to di!er across plants to reflect heterogeneity in the order in which plants are

dispatched. We also allow fk (·) to depend not only on excess load in a power plant’s own

region but potentially to depend on excess load across other regions as well. This dependence

reflects that electricity can be transmitted across regions in response to excess demand.

Intuitively, yDisp

kt captures how production by an individual power plant k in a given hour

t responds to fluctuations in electricity demand and nondispatchable production across the

grid. For example, as the sun goes down and solar production decreases, excess load will

increase across the country, particularly in regions heavily reliant on solar energy. yDisp

kt tells

us how individual power plants are dispatched to match these increases in excess load.

2.2.3 Damages

Let dk
(
yDisp

kt

)
be a function that maps dispatchable power plant k’s electricity production in

time t to the total environmental damages associated with the plant’s emissions of greenhouse

gases and air pollutants. We assume these damage functions are given exogenously and,

therefore, rule out the possibility that power plants endogenously switch fuel types in response

to policy changes. Let Dt (ELoadt) =
∑

k dkt
(
yDisp

kt

)
denote total damages from all power

19We assume that the plant’s policy function depends only on the current excess demand levels. Hypothet-
ically, production could also depend on previous electricity demand and production if, for example, the grid
can store significant amounts of electricity over time or if plants face significant ramping constraints. We can
accommodate this extension by allowing the function fk (·) to depend on lagged values of excess demand, or
on lagged production levels of the individual plant.
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plants in time t and let D (ELoad) =
∑T

t=0

Dt(ELoadt)

(1+r)t
denote the net present value of all

damages over time, where ELoad gives the excess load across all region and time periods.

The external benefit of a marginal solar panel installed by household i equals the damages

o!set over the panel’s lifetime. We write this as

#Di (ELoad) ↗

ϖD (ELoad)

ϖNi

 =
T

t=0

Ait

(1 + r)t


ϖDt (·)
ϖESolar

Rt

 ,

the present discounted sum of the product of Ait, the electricity produced by the panel in

any given period, and the absolute value of εDt(·)
εESolar

Rt
, the marginal damages associated with

nondispatchable plant production.

2.3 Government’s Problem and Nationally-Optimal Subsidies

The government chooses subsidies to maximize the sum of total utility minus total envi-

ronmental damages subject to an externally set budget constraint.20 We consider a gov-

ernment who does not face a budget constraint in Section 6.4. To ease up on notation,

let sij = sPanelj Nω
i + skWh

j AiNω
i + sCost

j pInsj (Nω
i ) denote the total subsidy paid to household i

conditional on installation. Further, let εNω
i

εsεj
give the derivative of solar panels installed by

household i with respect to a given subsidy type ϱ → {kWh,Panel,Cost}, and let ↑↘mi
ϑ indicate

the household i is on the margin of installing a positive number of panels with respect to a ϱ

subsidy, meaning the household does not install given the current subsidies but would install

in response to a small increase in the given subsidy. Finally, let Mj =
∫
i→Ij midi denote

the total number of households who install solar panels in state j, where Ij is the set of

households in state j.

The government maximizes the sum of utility less environmental damages,



i

Vidi
︸ ︷︷ ︸
Utility

↑D (ELoad)︸ ︷︷ ︸
Damages

. (5)

The government faces the constraint that the sum of subsidies cannot exceed an externally

20We are assuming that these are the only policy instruments the government can access. The government is
restricted to not price the externality directly, as in Pigou (1920). Changes in subsidies could also change firm
profits. We assume that the government does not value profits of utility companies or solar panel installation
companies. In reality, utility companies operate as regulated monopolies, where profits are directly limited.
Profits of solar panel installation firms not entering the government’s objective is also consistent with a model
in which the price of installation is always equal to the marginal cost of an installation. We analyze a planner
who minimizes environmental damages in Section 6.2.
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set constraint 

j



i→Ij
sijm

ω
i di

︸ ︷︷ ︸
Government Cost

↓ G, (6)

where G is the maximum amount the government can spend on subsidies. We can reformulate

the government’s objective function as the Lagrangian

W =



i

Vidi
︸ ︷︷ ︸
Utility

↑D (ELoad)︸ ︷︷ ︸
Damages

↑ς







j



i→Ij
sijm

ω
i di

︸ ︷︷ ︸
Government Cost

↑G




, (7)

where ς is equal to the marginal cost of public funds. In practice, we will set G to the present

discounted value of the national cost of solar subsidies, given the current system of subsidies.

The nationally-optimal system of subsidies must satisfy εW
εsεj

= 0 for each type of subsidy

in each state, which implies

ϖMj

ϖsϑj
≃

(↑↑↘
#Dϑ,ext

j ↑ ς↑↘s ϑ,ext
j

)

︸ ︷︷ ︸
Extensive Margin

+
ϖNj

ϖsϑj


Mst

j

≃

↑↑↘
#Dϑ,int

j ↑ ς

↑↑↘
ϖs

ϖN
ϑ,int
j



︸ ︷︷ ︸
Intensive Margin

+(1↑ ς)Mj
ϖsij
ϖsϑj︸ ︷︷ ︸

Mechanical E!ect

= 0. (8)

We provide a derivation for equation (8) in Online Appendix B.3 and provide definitions for

each individual object in the upcoming text. The first term (“Extensive Margin”) captures

the trade-o! between environmental benefits and fiscal costs associated with households who

are additional with respect to a small subsidy increase: the households who currently do not

install any solar panels but would install solar panels in response to a slight increase in a

given subsidy sϑj . The term
ϖMj

ϖsϑj
=



i→Ij

↑↘mi
ϑdi

gives the number of households on the margin of installing solar panels with respect to a

given subsidy type sϑj . These additional installations lead to a societal benefit by reducing

environmental damages. The average damages o!set across additional installer households

is denoted as
↑↑↘
#Dϑ,ext

j and is formally given by

↑↑↘
#Dϑ,ext

j =

∫
i→Ij #Di

(
ELoadSB

)
Nω

i
↑↘mi

ϑdi
∫
i→Ij

↑↘mi
ϑdi

,

where ELoadSB is the excess load under the optimal system of subsidies. These additional

13



installations also receive subsidies and thus are associated with a fiscal cost. We denote the

average cost associated with a marginal installation household as ↑↘s ϑ,ext
j , formally written as

↑↘s ϑ,ext
j =

∫
i→Ij sij

↑↘mi
ϑdi

∫
i→Ij

↑↘mi
ϑdi

.

The second term of equation (8) (“Intensive Margin”) captures the environmental-fiscal

trade-o!s associated with intensive margin adjustment: increases in the number of panels

purchased for households who already choose to install a positive number of panels. The

term
εNst

j

εsεj


Mst

j
gives the total increase in panels associated with an increase in a given subsidy,

holding the set of households who install solar panels constant, which we write as

ϖN st

j

ϖsϑj


Mst

j

=



i→Ij
mω

i

ϖNω
i

ϖsϑj
di.

The terms
↑↑↘
#Dϑ,int

j and
↑↘
εs
εN

ϑ,int
j give the average damages o!set and the average fiscal cost,

respectively, associated with these additional panels.21 Taken together, these first two terms

show that the government will optimally increase subsidies which induce a greater number

of additional installations and additional panels from households associated with significant

environmental benefits and for whom fiscal costs are low.

The final term (“Mechanical E!ect”) captures the e!ects of increasing subsidies for the

non-additional households: the households who already choose to install solar panels and

thus receive a larger subsidy from the government. The total size of this transfer is the

total number of panels installed in state j, Mj, multiplied by the average increase in subsidy

for households who have installations, εsij
εsεj

, holding installations and the number of pan-

els constant.22 Each dollar transferred to these non-additional households increases welfare

by (1↑ ς), which reflects the increase in household utility less the decrease in government

funds.23 In summary, equation (8) measures the e!ects of subsidy changes on welfare, ac-

counting for environmental benefits, fiscal cost, and household utility.

However, solving for nationally-optimal subsidies requires more structure on the problem.

21These are formally given by
↑↑↘
#Dω,int

j =

∫
i→Ij

!Di(ELoadSB)mω
i

εNi
εsϑj

di

∫
i→Ij

mi
εNi
εsϑj

di
and

↑↘
εs
εN

ω,int
j =

∫
i→Ij

εsij
εNi

mi
εNi
εsϑj

di

∫
i→Ij

mi
εNi
εsϑj

di
.

22Formally this is εsij
εsϑj

=

∫
i m

ω
i

εsij

εsϑj
di

∫
i m

ω
i di

.
23Note that the utility of additional households does not show up in equation (8) since there is no first-order

welfare e!ect for households who are additional with respect to a marginal subsidy increase (i.e., households
who choose to install solar panels in response to the increase in subsidies). This result comes from the envelope
theorem. See also Colas, Findeisen, and Sachs (2021) for a discussion of the roles played by marginal and
inframarginal agents in the first-order e!ects of targeted subsidy increases.

14



While it may be possible to calculate the environmental benefits of marginal solar panel

installations given the current distribution of solar panel installations, to solve for the optimal

subsidies, we need to know how marginal benefits change in response to di!erent subsidy

schemes. Given that power plants’ production plans are nonlinear, the marginal damages

evaluated at current installation levels will di!er from those at the optimum. Further, the

optimal subsidies characterized by equation (8) depend not only on marginal damages, but

also on the number of non-additional households and the number of households on the margin

of installation with respect to various types of subsidies. Like the marginal damages, both

of these objects are a function of the system of subsidies.

Therefore, our approach is to estimate a fully specified version of our model, and then

use that model to quantify the system of nationally-optimal subsidies. Further, the struc-

tural model allows us to quantify the e!ects of alternative subsidy schemes on the spatial

distribution of rooftop solar and the resulting environmental benefits and fiscal costs.

3 Quantitative Model

3.1 Household preferences

Let φ denote the census tract in which a household lives. We assume that the nonpecuniary

utility of installation of installing Ni panels, εi (Ni), is given by a polynomial term in Ni, a

term that captures di!erences in the benefits of installation across demographic groups, and

an idiosyncratic term. Specifically, we parameterize the nonpecuniary value of installation as

εi (Ni) = ε0 + ε1NNi + ε2NN
2

i︸ ︷︷ ︸
Polynomial in Ni

+ εdemXϖ︸ ︷︷ ︸
Local Demographics

+ ↼↽i︸︷︷︸
Idiosyncratic

where ε0, ε1N , and ε2N are parameters, εdem is a vector of parameters, Xϖ is a vector of

demographic characteristics associated with the tract in which the household lives, and ↽i is a

logit preference draw with scaling parameter ↼. In practice, we specify εdemXϖ = εCollXColl
ϖ +

εPolXPol
ϖ , where XColl

ϖ the fraction of individuals in the census tract with a college education

and XPol
ϖ is the percent of voters who voted Democrat in the 2016 presidential election.

Recall that the number of panels installed cannot exceed the space the household has

available for panels, denoted by N̄i. The optimal number of panels conditional on installation

is therefore given by

Nω
i = min


N̄i,↑


εµij

εNi
+ ε1N

2ε2N


, (9)

where εµij

εNi
is the derivative of monetary benefit of installations (µij) with respect to instal-
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lation size (Ni). Loosely speaking, we can see that the ratio ϱ1N
ϱ2N

dictates the average size of

installations while the parameter ε2N dictates the degree to which Nω
i varies with subsidies.24

For example, a smaller value of ε2N in absolute value would imply that households are more

responsive to subsidies along the intensive margin.

Given that draws of ↽i are from a logit distribution, the probability that a household

installs panels is equal to

⇀i =

exp


µij(Nω

i )+ϱ0+ϱ1NNω
i +ϱ2NNω2

i +ϱdemXϑ

ς



1 + exp


µij(Nω

i )+ϱ0+ϱ1NNω
i +ϱ2NNω2

i +ϱdemXϑ

ς

 . (10)

The partial elasticity of installation probability with respect to monetary benefits is equal to

ϖ log (⇀i)

ϖµij (Nω
i )

=
1

↼
(1↑ ⇀i) . (11)

Therefore, the parameter ↼ dictates the extent to which increases in subsidies will lead to

increases in installations. A smaller value of ↼ implies that increases in subsidies will lead to

larger increases in the number of installations.

3.2 Dispatchable Power Plant Production

Production by dispatchable power plant k in time t is given by equation (4). We assume

the latent function fk (ELoadt, ϑkt) is a quadratic of excess load in each NERC region within

plant k’s interconnection with an additive shifter denoted by ϑkt. Formally, letting Rk denote

the set of NERC regions within the interconnection that contains plant k, we specify

fk (ELoadt, ϑkt) = ⇁0

k +


R→Rk

(
⇁1

RkELoadRt + ⇁2

RkELoad
2

Rt

)
+ ϑkt, (12)

where ⇁0

k is a constant term, ⇁1

Rk is a parameter which dictates how fk (·) changes in response

to excess load in region R, ⇁2

Rk is a parameter which dictates how fk (·) responds to excess

load squared in region R, and ϑkt is a normally distributed idiosyncratic term with a mean of

0 and a variance of ↼2

k. Note that all the ⇁k parameters and ↼2

k are plant-specific. We allow

fk (·) to depend on excess demand in all regions within an interconnection but not on excess

demand in other interconnections. This dependence reflects that electricity can be transmit-

24As we explain below, we parameterize pInsj (Ni) as a fixed cost plus a constant per-panel cost. This

implies that εµij

εNi
will be constant for a given household for Ni > 0.
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ted across regions within interconnections but is rarely transmitted across interconnections.25

Our assumed functional form implies that ykt is a Tobit function with latent variable fk that

is right censored at ȳk, plant k’s nameplate capacity, and left censored at 0.

This specification allows for relatively complex production patterns as a function of excess

demand. The parameter ⇁0

k dictates the values of excess demand over which a plant will

produce electricity, allowing for the possibility that some plants will operate when excess

demand is low while others will operate when excess demand is su”ciently high. For example,

all else equal, plants for which ⇁0

k takes a large negative value will only have positive electricity

production when excess demand is very high, as is true of plants that tend to have a late

position in the dispatch curve. Conditional on positive production, the parameters ⇁1

Rk and

⇁2

Rk will dictate the intensity at which the balancing authority dispatches a plant. Finally,

this specification allows plants to di!er in the extent to which their production is transmitted

across regions. Some plants may predominantly transmit power within their own region, while

others may transmit large amounts of power to other regions within an interconnection.

Further, while the latent function fk (·) is assumed to be constant across time, we show in

Section 5.2 that our model can replicate di!erences in dispatchable production over the day

and year in response to fluctuations in nondispatchable production and electricity demand.

In particular, our model can generate the ramping pattern of dispatchable generators through

the afternoon as solar generation decreases and electricity demand increases. An important

caveat to our approach is that these plant-specific policy functions are not invariant to changes

in factors which may change the order in which plants are dispatched, such as changes in

fuel costs or the introduction of a carbon tax. However, we do not expect first-order e!ects

on these factors in the counterfactual subsidy schemes we investigate.

It is worth discussing how the specification of power plant production we develop here

di!ers from the specifications used in Holland et al. (2016) and Sexton et al. (2021). Those

papers estimate marginal emissions rates for individual power plants in which time-specific

reduced-form coe”cients capture all di!erences in emissions rates across time. These specifi-

cations, therefore, do not model how production levels endogenously respond to fluctuations

in renewable production. As such, the estimated emissions rates for each power plant are

constant conditional on time, and independent of the amount of solar electricity produced.

Since we aim to estimate marginal emissions both under current conditions and under

significant changes to the distribution of residential solar panels, we require a di!erent ap-

proach to modeling power plants. In our model, production varies flexibly in excess load and

therefore is endogenous to both electricity demand and production from solar and other re-

25We constrain fk (·) such that the function is weakly increasing in excess load for all regions. That is, we
set fk (·) to its value at the inflection point if the function would otherwise be decreasing in excess load.
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newable sources. Thus, marginal emissions are not constant as a function of residential solar

production. An additional benefit of our approach is that we identify the model’s parameters

with excess load, which takes advantage of variation in both demand and production from

nondispatchable units. The other models only leverage variation in demand.

3.3 Damages

The final piece of the model is determining damages from electricity production at power

plant k, as described by the function dk (ykt). We specify this function in two parts, first

mapping electricity generation into emissions and then mapping emissions to damages. Both

parts are plant-specific, capturing that damages from electricity production depend on a

power plant’s technology, location, and stack height. A power plant’s technology dictates the

extent to which electricity production leads to emissions, while a plant’s location and stack

height determine the extent to which emissions of local pollutants a!ect population centers.

Concretely, let g → G index pollutants, where we assume the set G consists of the pollutants

NOx, PM2.5, SO2, and CO2 equivalent (CO2e).26 As shown by Holland et al. (2022), power

plants’ marginal emissions rates tend to decline as utilization increases, where utilization is a

plant’s production level relative to its capacity. Therefore, to allow for emissions rates which

vary across production levels, we specify emissions of each pollutant as a power-plant-specific

linear spline in production with a slope that di!ers above and below power plant k’s median

production. Letting y50k denote the median amount of power plant k’s production in the data

conditional on positive production, we write power plant k’s emissions of pollutant g as

Emisgkt (ykt) =





κ1

gkykt + egkt if (ykt ↑ y50k ) < 0

κ1

gkykt + κ2

gk (ykt ↑ y50k ) + egkt if (ykt ↑ y50k ) ↔ 0
. (13)

Power plant k’s damages in time t are then given by dkt (ykt) =
∑

g→G δgkEmisgkt (ykt) ,

where δgk gives the marginal damages associated with emissions of g by power plant k,

accounting for power plant k’s location and stack height.

26CO2 equivalent includes emissions of other greenhouse gasses in addition to carbon dioxide, in particular,
methane and nitrous oxide. These other GHGs are converted into a common global warming potential equal
to that of one ton of carbon dioxide.
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4 Data and Estimation

4.1 Data Sources

In this section, we give an overview of the main data sources we use in our analysis. Additional

details on data sources and cleaning can be found in Online Appendix A.

Solar Panel Installations Our primary source for solar panel installations is the Deepsolar

database (Yu et al., 2018), a database of solar panel installation in the contiguous US created

by applying a deep-learning model for detecting solar panels on satellite imagery from the

year 2016.27 From Deepsolar, we use tract-level data on the total number of residential solar

systems and on the total panel area covered by residential solar panels. Combining these

two measurements gives us the average size of solar installations, which we use to infer the

average number of panels per installation in each tract.

We supplement these data on solar installations with data from Google Project Sunroof

(GPS), another dataset created by applying a machine-learning framework to satellite im-

agery. This dataset provides the distribution of rooftop sizes that are suitable for solar panel

installation in each tract, which we use as the empirical analog of N̄i within each tract for

56,940 census tracts in the US.28

Rooftop Solar Production Next, we need data on {Ait}Tt=0
, the stream of electricity

potentially produced by each panel installed by household i. For this, we combine data

on yearly solar production potential from GPS with county-level time profiles of solar pro-

duction from the National Renewable Energy Laboratory’s System Advisor Model (SAM).

Specifically, GPS provides measures of yearly kWh that can be produced by panels in a given

tract, accounting for local weather conditions and shading. We set a household’s yearly solar

potential for newly installed panels as the mean household solar potential in the GPS data

for the household’s tract. We assume solar panel e”cacy depreciates by a constant rate of

0.5% each year.29 Next, we need to determine the distribution of solar production over each

hour of the panel’s lifetime. For this, we utilize SAM, which provides engineering estimates

27Deepsolar is the first high-fidelity database of solar panel installations in the United States. Other solar
panel databases rely on either self-reported data or surveys (e.g., Open Solar Project) or do not cover the
entire contiguous US (e.g., Tracking the Sun). The machine-learning algorithm employed by Deepsolar is
highly accurate, achieving a precision of 93% and a recall of 89% in residential areas.

28These tracts include 90% of the 33 million square meters of residential solar panels in the Deepsolar
database. The GPS data specifically provide the number of buildings in each tract with the potential for
various installation size bins. We set N̄i as the midpoint of the installation size bin for all buildings which
fall in a given bin.

29Jordan and Kurtz (2013) review the literature on photovoltaic degradation rates and find a median
degradation rate of 0.5%.
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of electricity production with panel specifications and climate as the model inputs (Blair,

Dobos, and Gilman, 2013). For each county, we calculate the fraction of yearly solar pro-

duction produced at any given hour over the year. See Online Appendix A.4 for details. We

multiply this fraction of energy produced each hour by a household’s annual solar potential

to calculate our measure of Ait, hourly electricity production for any hour t over the panel’s

lifetime.

Subsidies and Prices For subsidies, we rely on data from Sexton et al. (2021), who

assemble data from the Database of State Incentives for Renewables & E”ciency to calculate

state and federal subsidies in 2017. For the price of electricity, we use the average retail price

of electricity as reported by the EIA.30 We use a value of r = 2% for the real interest rate.

We estimate installation prices using data from Tracking the Sun, a project collecting

data on solar panel installations by the Lawrence Berkeley National Lab. As Tracking the

Sun only covers 25 states, we assume that all states within a given Census region share the

same installation pricing function. Specifically, we assume that installation prices take the

form pInsR(j) (Ni) = p0,InsR(j) +Nip
1,Ins
R(j) , where p

0,Ins
R(j) is a fixed cost and p1,InsR(j) is a per-panel cost, and

R(j) is the Census region containing state j. We present our estimates of the installation

price functions and provide evidence that this linear pricing function is a good approximation

of prices in the data in Online Appendix C.1.

Power Plants Our electricity generation data come from Open Grid Emissions (OGE), an

open-source project aimed at creating high-quality electricity emissions data that is publicly

available (Miller et al., 2022). These data combine commonly used electricity data sources,

namely hourly electricity generation and emissions for generating units from the EPA’s Clean

Air Markets Division (CAMD), monthly production and emissions from EIA form 923, and

hourly balancing authority by fuel type electricity generation from EIA form 930.

We use their power-systems-level and plant-level data products from 2019.31 The power-

systems-level data gives hourly electricity production for each balancing authority, broken

out by fuel category, enabling us to calculate each region’s total hourly load. The plant-level

data gives hourly electricity production and emissions for nearly 10,000 power plants. This

coverage is the main innovation of the OGE data, as previously hourly emissions and produc-

tion were only available for su”ciently large fossil-fuel plants included in the EPA’s CAMD

30These data can be downloaded at https://www.eia.gov/electricity/state/. See Ito (2014) for
evidence that consumers respond to average, rather than marginal, electricity prices.

31We use data from 2019 as it is the first year available from OGE and thus closest to the Deepsolar data
while also reflecting the modern electricity grid. The OGE methodology relies on the EIA form 930, which
is only available starting in mid-2018.
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(a) Expected subsidy (b) Expected monetary benefit

Figure 1: Expected subsidies and monetary benefit for a 15-panel system in each state. Colors are scaled by
the percentile of their respective value. Subsides and monetary benefits are measured in 2014 dollars. See
text for details.

data. The plants excluded from CAMD data account for nearly 30% of NOx emissions, 8% of

SO2 emissions, and 7% of CO2 emissions. We use the 4,625 dispatchable plants with postive,

non-constant production in estimation, yielding over 40 million plant-hour observations after

the cleaning process described in detail in Online Appendix A.7.

Damages To calculate damages associated with emissions, we utilize AP3, a state-of-the-

art integrated assessment model that translates emissions from locations across the US into

physical and economic damages. Specifically, AP3 uses a reduced-complexity air quality

model to map emissions of local pollutants to an ambient concentration of air pollutants in

each county in the US. The model then translates these ambient concentrations into dam-

ages, using estimates of the physical e!ects of pollution exposure from the literature and

considering population distribution and vital statistics across counties.32 AP3 and its prede-

cessors, APEEP and AP2, have been employed extensively in the environmental economics

literature.33 In addition to AP3, we use the social cost of carbon to quantify damages from

greenhouse gas emissions.

4.2 Descriptive Patterns

Figure 1a shows how the generosity of subsidies varies across states under the current system

of subsidies. We measure subsidy generosity as the present discounted value of subsidies an

average household in each state would receive if they installed a 15-panel system, roughly

the average size of installations in the data. There is considerable variation across states in

the generosity of these subsidies. New Jersey delivers nearly 29 thousand dollars in subsi-

32AP3 calculates damages as increased mortality risk from pollution exposure. For the value of mortality
risk reduction, we use the EPA’s suggested value of 7.4 million translated into 2014 dollars.

33See, e.g., Muller, Mendelsohn, and Nordhaus (2011), Holland et al. (2016), Shapiro and Walker (2020),
Holland et al. (2020), Sexton et al. (2021), Cicala et al. (2021), Holland et al. (2021).
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Figure 2: Installed solar systems per 1000 individuals.

dies, compared to seven states providing no additional funding, leading to under 6 thousand

dollars in subsidies from the federal government. For comparison, the average cost of a solar

installation in 2017 was roughly 24.5 thousand dollars. Therefore, the present discounted

value of subsidies ranges from roughly one-quarter to more than the entire cost of an aver-

age installation. Figure A4 in Online Appendix A.6 shows the state-level subsidy generosity

separately for each of the three subsidy types. The majority of the value of subsidies comes

from cost-based, rather than production-based or panel-based, subsidies.

In addition to subsidies, the monetary incentives to install panels vary geographically

because of spatial di!erences in prices and sunlight. Figure 1b shows the monetary benefits

associated with solar panel installations. Specifically, for every household within the model,

we calculate the net present value of monetary benefits of installation, µij (Nω
i ), evaluated at

Nω
i = 15. We then take the average monetary benefit over all households within a state. This

total monetary benefit therefore measures the net present value of installing solar panels in a

given state for the average household, taking into account local di!erences in solar irradiance,

electricity and installation prices, and the set of local subsidies. The states with the highest

monetary benefits are located in the Northeast, a region with high electricity prices and

subsidies. Additionally, California has a high monetary value of installation, combining high

electricity prices with high levels of solar irradiance. Meanwhile, several states in the Midwest

and Mountain West have negative values, driven by lower subsidies, electricity prices, and

solar radiation. Figure 2 shows installations per capita at the census tract level. We can see

that installations are generally higher in areas with larger monetary benefits, such as most

of the Northeast and California. Meanwhile, households in the Midwest, where there are

relatively low subsidies, less sunlight, and low electricity prices, install few solar panels.

In Appendix C.3, we investigate how the monetary benefits of solar installations corre-
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(a) Expected Monetary Benefit (b) Log Installations Per Capita

Figure 3: Border Discontinuities in Monetary Benefits and Installations. Each graph plots estimated location-
bin fixed e!ects from a regression of the variable in question on border and location-bin fixed e!ects. Monetary
benefits are measured in 2014 dollars. Positive values on the X-axis represent households on the side of the
border with more generous subsidies, and negative values on the X-axis indicate the side of the border with
less generous subsidies.

late with the average size of solar installations. Across a number of specifications, we find

that increased monetary benefits are associated with a statistically significant, but small in

magnitude, increase in the average size of installations.

Border Discontinuities When we estimate our structural model, we use a border dis-

continuity approach, which compares installation rates on either side of state borders. Here,

we present descriptive evidence on how the monetary benefits of installation and installation

rates change as we cross the border from states with relatively less generous subsidies to

states with more generous subsidies.

For this exercise, we limit our sample to tracts within 50 miles of state borders. Given the

average solar irradiance in the border region, we calculate the net present value of subsidies a

household would receive for a 15-panel installation. Then, we classify the side of the border

for which this hypothetical subsidy is higher as the “generous” side. Finally, we divide

households into 5-mile-wide bins in locations relative to the state border. To examine how

a given variable changes as we approach and cross state borders, we follow Bayer, Ferreira,

and McMillan (2007) and regress the variable in question on state-border fixed e!ects and

location-bin fixed e!ects. We plot these estimated location-bin fixed e!ects, which give

the conditional average of the variable in question in a given location bin relative to the bin

nearest to the border on the less generous subsidy side (the omitted location-bin fixed e!ect).

Figure 3a shows how the expected monetary benefit varies by the location relative to the

border. As before, we measure monetary benefit as the average net present value of installing

a 15-panel system in a given tract. Positive values on the X-axis represent households on the

side of the border with more generous subsidies, and negative values on the X-axis indicate

the side with less generous subsidies. By construction, tracts on the negative (left) side of
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the border have lower monetary benefits, with a jump of roughly 8,000 as we move from the

less generous side of the border to the more generous side. Figure 3b shows the results for log

installation rates. There is a sharp increase in installation rates across the border—moving

from the less generous side of state borders to the more generous side is associated with

roughly a 50% increase in installations per capita.

As argued by Black (1999), Bayer, Ferreira, and McMillan (2007) and Lee and Lemieux

(2010), these discontinuities in installation rates are informative about the causal e!ect of

subsidies on installations if other variables which may influence installation rates are contin-

uous at state borders. One particular concern is that household preferences for solar panels

may be discontinuous at state borders. This discontinuity would occur if, for example, house-

holds with stronger preferences for solar panels sorted onto the side of the state border with

more generous solar subsidies. Though we cannot measure preferences for solar panels di-

rectly, in Online Appendix C.4, we look for suggestive evidence for this type of sorting by

plotting 1) the percent of households with college degrees, 2) the percent of voters who voted

Democrat in the 2016 presidential election, and 3) average household income as a function of

distance to state border. We find no evidence of sorting around state borders among these

characteristics.

Another concern is that di!erences in other state policies, such as state tax rates, could

drive these discontinuities. To assess this concern, we run border discontinuity regressions

of log installations per capita on subsidies for solar panels, both with and without controls

for various state taxes. Table 1 shows the results. For each column, we limit our sample to

tracts within 10 miles of state borders and regress tract-level log installations per capita on

the net present value of subsidies for a 15-panel system, tract-level household demographics,

and state-border fixed e!ects.34 Column (1) gives regression results without any controls for

state and local taxes. Column (2) adds the state income tax rate, measured as the average

state tax rate evaluated at a household income of 60,000 dollars, roughly the average income

in the data. Column (3) adds sales tax, measured as the average state and local sales tax

in a given state, and Column (4) adds the average property tax rate in the state.35 The

estimates from these border discontinuity regressions are similar across all specifications,

but the parameter estimate slightly increases as we add state tax controls. The estimate in

Column (4) suggests a 1,000 increase in subsidies is associated with roughly an 8% increase

in installations. We will control for these state tax variables in the border discontinuity

34We include fixed e!ects for all state pairs which share a border. For example, California-Oregon,
California-Nevada, and California-Arizona are all included as separate fixed e!ects.

35Sales tax data are taken from Walczak and Drenkard (2017). Property tax rates are from Sexton et al.
(2021), who estimate property tax rates using data on real estate tax payments and property values from
the American Community Survey.
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Dependent Variable:
Log Installations per Capita

(1) (2) (3) (4)
NPV Subsidies ( 1000s) 0.0629*** 0.0755*** 0.0751*** 0.0826***

(0.00920) (0.00438) (0.00570) (0.00761)

Income Tax NO YES YES YES
Sales Tax NO NO YES YES
Property Tax NO NO NO YES
Distance Bandwidth 10 10 10 10
Observations 6,052 6,052 6,052 6,052

*** p<0.01, ** p<0.05, * p<0.1

Table 1: Regression of log installations per capita on the net present value of subsidies for a 15-panel instal-
lation within 10 miles of state borders. Subsidies are measured in thousands of 2014 dollars. State-clustered
standard errors in parentheses. All regressions contain border fixed e!ects and tract-level demographic con-
trols.

regressions we use in our structural estimation procedure.

Moreover, apart from the policies categorized as subsidies, there exist additional state

measures designed to promote solar adoption. If the prevalence of these policies correlates

with subsidy generosity, this may lead us to overestimate the responsiveness of installations to

subsidies. In Appendix C.5, we rerun these border discontinuity regressions with additional

controls for other state-level programs aimed at increasing solar installations that our subsidy

measures do not account for. Our results are robust to the addition of these additional

controls.

4.3 Estimation

Households We estimate the household installation component of the model via indirect

inference. In essence, we first compute a set of “auxiliary models” that describe installation

behavior in the data, and then simulate the structural model and calculate the auxiliary

models with simulated data. We choose the six structural parameters ↼, ε0, εColl, εPol, ε1N

and ε2N such that the auxiliary models computed from the model are as close as possible to

those from the data.

Our first auxiliary model is a border discontinuity regression which measures how instal-

lation rates change as we cross state borders.36 Formally, we run the following regression

36Similar border discontinuity approaches have been used frequently in the environmental literature (see,
e.g., Ito (2014), Feger, Pavanini, and Radulescu (2022), Hughes and Podolefsky (2015), or Rubin and
Au!hammer (2023)).
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using only tracts within 10 miles of state borders:

logMϖ = ▷µ̄ϖ + ◁Zϖ + ϱborder(ϖ) + ϑϖ,

where Mϖ is the total number of solar installations in tract φ, µ̄ϖ is the average monetary

benefit of installing a 15-panel system in tract φ, ◁ is a vector of regression coe”cients, Zϖ

is a vector of tract-level demographic and tax rate controls, and ϱborder(ϖ) is a state-border

fixed e!ect.37 The parameter ▷ measures the relationship between installation rates and

monetary benefits in narrow bandwidths around state borders, controlling for border fixed

e!ects. We target the coe”cient ▷ as an auxiliary model parameter.38 As argued above, ▷

is informative of the causal e!ect of monetary benefits on installation, given that household

characteristics potentially correlated with preferences for solar do not exhibit a discontinuity

at state borders. Additionally, we also target 1) log installations per household in each census

tract, and 2) the average number of panels per array in each census tract.

The six structural parameters of interest are well identified. As we can see from (11), the

parameter ↼ dictates the extent to which installations increase with monetary benefits. This

parameter is thus identified by the coe”cient ▷ from the border discontinuity regression.

Variation in demographics across tracts then jointly identifies ε0, εColl, and εPol. Finally, the

average number of panels in each array and how the size of arrays varies across cities identify

ε1N and ε2N .

Dispatchable Power Plants We estimate the power-plant-specific policy functions de-

scribed by equations (4) and (12) via maximum likelihood. We provide the likelihood func-

tion and additional details in Online Appendix B.2. Variation over time in both electricity

demand and production by nondispatchable plants creates variation in excess loads across

regions that identifies the parameters of the plant-specific policy functions.

Damages We estimate damages by combining power-plant level emissions data from EPA’s

Clean Air Markets Division with estimates of marginal damages from AP3. We estimate the

damages given by equation (13) via ordinary least squares using power-plant level emissions

data from OGE. To translate these emissions into damages, we need an estimate of δgk, the

marginal damages associated with emissions of pollutant g by power plant k. The AP3 model

37We again include fixed e!ects for all state pairs which share a border. The vector of controls Zϑ in-
cludes the tract-level college completion percentage and percent of voters who voted Democrat in the 2016
presidential election, the state income tax rate, the sales tax rate, and the average property tax rate.

38Our estimates of ω are not sensitive to the size of the bandwidth around state borders, nor the inclusion
of demographic controls. We obtain similar estimates of structural parameters when we instead include a
regression of log installations on subsidy levels rather than total monetary benefits.
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Estimate Standard Error
Dispersion of Idiosyncratic Utility ↼ 11.6 0.5
Percent College εColl 7.5 0.6
Percent Democrat εPol 17.6 1.7
Constant ε0 -308.4 13.2
Number of Panels ε1N 34.1 1.6
Number of Panels Squared ε2N -1.1 0.1

Table 2: Parameter estimates for household utility function. Standard errors calculated via bootstrapping.
“Percent Democrat” refers to the percent of voters who voted Democrat in the 2016 presidential election.

calculates the marginal damages associated with local pollutants emitted from every county

in the United States for varying stack heights. We, therefore, calculate δgk by matching power

plants to their corresponding county and stack height in the AP3 model.

We assume a social cost of carbon of 185 dollars per ton of CO22, based on the mean

estimate from Rennert et al. (2022).39

5 Estimation Results and Model Fit

5.1 Households

5.1.1 Parameter Estimates

Table 2 displays the estimates of parameters governing the household utility function. The

nonpecuniary value of installations is increasing in average local education and in the percent

of voters who voted Democrat in the 2016 presidential election. The final two parameter

estimates, which dictate utility as a function of installation size, imply that the optimal

size of an installation is increasing in monetary benefits, but only marginally so: a 1000

increase in the monetary benefit associated with installing an additional panel leads to only

a
 1

2↑(↓1.1)

 ⇐ 0.45 increase in the optimal number of panels.40

To get a better sense of what the parameter estimates imply for installation probabilities,

recall that the partial elasticity of installation probability with respect to monetary benefits is

39Rennert et al. (2022) is the same methodology and results on which US EPA based its December 2023
guidance for the social cost of greenhouse gasses. They report estimates in 2020 US Dollars. We convert this
to 2014 dollars for consistency with the rest of our analysis. We do not account for the environmental damages
associated with producing and disposing of solar panels. These costs are small relative to the environmental
benefits of power produced by a solar panel (Heath and Mann, 2012).

40Recall from equation (9) that the optimal number of panels is given by Nϖ
i = min


N̄i,↑

 εµij
εNi

+ϱ1N

2ϱ2N


.

We estimate ε2N = ↑1.1 and increasing the per-panel subsidy by 1000 increases εµij

εNi
by 1.
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(a) Monetary Benefit (b) Education

(c) Percent Democrat (d) Border Discontinuities

Figure 4: Panels (a), (b), and (c) show local nonparametric fit of tract-level log installation per household
in the data (red dotted line) and simulations (solid blue line) on (a) the total monetary benefit of installing
15 solar panels, (b) the percent of households with a college degree, and (c) the percent of voters who voted
Democrat in the 2016 presidential election. Monetary benefits are measured in 2014 dollars. Panel (d) plots
estimated location-bin fixed e!ects from a regression of log panels per household on state tax rates and
location-bin and state-border fixed e!ects. Positive (negative) values on the X-axis represent households on
the side of the border with more (less) generous subsidies. The dots represent estimates of location-bin fixed
e!ects from the data (red hollow dots) and the simulations (blue dots).

approximately equal to 1

ς .
41 Given that we measure monetary values in thousands of dollars,

our estimate of ↼ = 11.6 implies that a thousand dollar increase in the monetary value of

installation leads to approximately a 1

11.6 ⇐ 9 percent increase in the number of installations.

5.1.2 Model Fit (Installations)

Figure 4 assesses model fit with regard to solar installations. Figure 4a shows the relationship

between tract-level log installations per household and the monetary benefits of installation

in the data and simulation. We calculate the lifetime monetary benefits of installation as

the net present value of installing a 15-panel array in each census tract. We can see that

in both the data and simulations, installations are strongly increasing in monetary incen-

tives.42 Subfigures 4b and 4c show the relationship between installations and the percentage

41Di!erentiating equation (10) yields ε log(ςi)

εµij(Nω
i )

= 1
φ (1↑ ϑi). The average value of ϑi in our dataset is about

0.02.
42The slight decrease in installation rates for the highest monetary values in the data reflects that Mas-

sachusetts and New Jersey have very generous subsidies and high electricity prices, but installation rates are
lower than in states such as California and Arizona, which have less generous subsidies.
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of households with a college education, and the percent of voters who voted Democrat in the

2016 presidential election. The fit is quite good in both dimensions.

Subfigure 4d examines how log panels per household change as we cross state borders.

We first divide households into 10-mile-wide bins in location relative to the border using the

procedure described in Section 4.2. We then regress tract-level log panels per household on

location-bin fixed e!ects, controlling for border fixed e!ects and state tax rates. Finally, we

plot the estimated distance-bin fixed e!ects for both the data (blue dots) and our simulated

model (red dots). Positive values on the X-axis represent households on the side of the border

with more generous subsidies, and negative values on the X-axis indicate the side with less

generous subsidies. Both data series show a similar “jump” as we move from the side of the

border with less generous benefits to the side with more generous benefits.

5.1.3 Comparison to Existing Estimates

Gillingham and Tsvetanov (2019) estimate the price elasticity of demand for solar panel

installations using an approach that accounts for excess zeroes, unobserved heterogeneity,

and the endogeneity of installation prices. Their estimates imply a price elasticity of demand

evaluated at the mean installation price equal to -0.65. We simulate a marginal increase in

installation prices and calculate the implied price elasticity evaluated at the mean installation

price. This yields an estimate of -0.74, close to the elasticity estimated by Gillingham and

Tsvetanov (2019).

Crago and Chernyakhovskiy (2017) analyze the e!ects of policy incentives on residential

solar panel installations using county-level panel data from 12 states in the US Northeast.

They find that increasing rebates by 1 per watt increases solar panel installations by 47%.

We replicate this experiment using our structural model and find that increasing rebates by

1 per watt in the same 12 states increases installations by 36%, of a similar magnitude to

the estimates in Crago and Chernyakhovskiy (2017).43

Hughes and Podolefsky (2015) estimate the e!ects of subsidies on solar panel installations

by examining the introduction of a solar rebate in California. In their preferred estimate,

they find that a 470 increase in total rebate leads to a 10% increase in installations. From

our estimates above, we can see that a 470 increase in subsidies would lead to approximately

a .47 ≃ 1

ς ⇐ 4 percent increase in the number of installations. Thus, our result is smaller

than the estimate in Hughes and Podolefsky (2015) but of a similar magnitude.

43Specifically, we increase the per-panel subsidy, sPanelj , in these same 12 states. We convert the per-watt
subsidy into a per-panel subsidy by assuming 250 watts per panel.
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Figure 5: Model fit at the interconnection level. The Y-axis gives the production of dispatchable plants
predicted by the model, measured in GWh while the X-axis gives the production in the data. Dots represent
an hour of production for each interconnection, smoothed lines show the fit of a generalized additive model.

5.2 Power Plants

We now evaluate the performance of the power plant portion of the model. We include

additional model fit results for power plants in Online Appendix C.6, including out-of-sample

predictions using 2020 data. Figure 5 shows predicted electricity production of dispatchable

plants against actual electricity production.44 Each dot represents an hour of aggregate

production by dispatchable plants for each interconnection in the data (X-axis) and predicted

by the model (Y-axis). The model fits well in all three interconnections, producing R-squared

values of 0.99, 0.96, and 0.96 in the East, West, and Texas, respectively.

We assess fit over hours and seasons in Figure 6. Each panel shows predicted and actual

production of dispatchable plants for the average day for each of the three interconnections

across four seasons. This figure shows that the model matches daily peaks and troughs of

production in response to changes in demand and di!erences in intraday timing of those

peaks and troughs between seasons. In particular, our model is able to generate the pattern

of increasing dispatchable production through the afternoon, the time where solar power

generation decreases and electricity demand increases. This is especially true for seasons and

interconnections when solar makes up a larger share of electricity production. A region-level

breakdown of these plots is available in Online Appendix C.6.

Not only does the model match total production, but it also replicates changes in the

44While generally performing very well, we note that these predictions are lower than actual production
values by about 2 percent on average. The Tobit model relies on normal and homoskedastic errors to produce
consistent estimates (Cameron and Trivedi, 2005, p. 538). As these models are power plant specific, this
assumption applies to the errors within power plants, some of which may violate the normality assumption.
We do not think this issue meaningfully a!ects our results as the discrepancy between actual and predicted
production is small.
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Figure 6: Model fit at the interconnection level by hour and season. Hour reflects Eastern Standard Time
(EST). Each panel shows predicted and actual production of dispatchable plants over the course of the
average day, for each of the three intersections and across four seasons. The dashed green line gives electricity
production in the data while the solid orange line gives predicted production.
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Figure 7: Fuel mix of production by interconnection. The X-axis gives excess load at the interconnection
level and the Y-axis gives the percent of electricity production that is produced by each of the fuel types.
The dashed lines show the fuel mix in the data while the solid lines show the simulated fuel mix.

fuel mix at varying demand levels, reflecting that plants di!er in how balancing authorities

dispatch them as a function of excess demand. Figure 7 shows the percentage of total produc-

tion in each interconnection produced by plants of each fuel type in the model and the data.

The X-axis of each panel varies the interconnection-level excess load—the total amount of

electricity demand that must be satisfied by dispatchable plants. Across all interconnections,

our model’s predictions match the observed fuel mix very well. In all interconnections in the

model and data, natural gas as a share of production increases in excess load. Meanwhile,

production levels of clean, low-marginal-cost nuclear and hydroelectric plants generally de-

crease as a percentage of total production. An important di!erence between the Eastern and

Western Interconnections is that coal increases its share of production in the East, whereas

coal’s production share declines except at the lowest levels of excess load in the West.

These changes in the fuel mix imply that the marginal damages of electricity production

may vary not only spatially but also as a function of electricity demand. To illustrate this,

Figure 8 plots simulated marginal damages of energy production in each region within each

interconnection as a function of excess load.45 Overall, marginal damages are highest in

regions within the Eastern interconnection, reflecting, in part, the interconnection’s reliance

on production from coal-fired power plants. However, there is significant heterogeneity in the

marginal damages across regions within this interconnection. Marginal damages are highest

45To calculate this, we simulate increasing excess load by a small amount in the region in question. We
then divide the resulting change in total damages associated with power plants in the region by the change
in total production by these power plants. Note that this is the marginal damage with respect to electricity
production within a given region, not electricity demand from a given region. To the extent that a region
imports electricity from other dirtier or cleaner regions, the marginal damage of electricity demanded may be
higher or lower. For example, the NPCC imports electricity from the relatively dirty RFC, making marginal
damage of electricity demand in NPCC higher than the electricity produced there.
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Figure 8: Estimated marginal damage of electricity production by region. The X-axis of each panel varies
the total excess load in each of the three interconnections, and the Y-axis gives the simulated marginal
damages per MWh of electricity produced in each region. In the Western interconnection, CAL covers most
of California and WECC the rest of the western states. TRE is the only region in Texas. In the eastern
interconnection, MRO covers the Midwest, NPCC the Northeast, RFC the mid-Atlantic, and SERC the
Southeast. See Appendix A.7 for a detailed description of the regions and Figure A5 for service areas of each
region. See text for additional details on marginal damage calculations.

from power plants the RFC region, which spans much of the Mid-Atlantic and lower Great

Lakes. Regions also vary in the extent to which their marginal damages of production change

in excess load. In the Western and Texas interconnections, marginal damages are relatively

flat as a function of excess load while marginal damages in several regions in the Eastern

interconnection are strongly increasing in excess load. For example, in the NPCC, the region

covering the Northeast, marginal damages increase by over 30% between the 10th to 90th

percentile of excess load, going from 67/MWh to 88/MWh.

6 Counterfactuals and Nationally-Optimal Subsidies

6.1 Welfare-Maximizing Subsidies

We now use the estimated structural model to quantify the welfare-maximizing solar subsidies

characterized by equation (8). We outline the algorithm we use to numerically solve for

welfare-maximizing subsidies in Online Appendix B.4. The results are displayed in Figure

9 and in Table 3. In all tables, “Baseline” refers to simulated outcomes under the current

system of subsidies.

Figure 9a and the first panel of Table 3 show how total subsidy generosity varies across

states under the nationally-optimal system of subsidies.46 We measure subsidy generosity as

the present discounted value of subsidies an average household in each state would receive if

46In Online Appendix C.7, we show how the government should optimally allocate subsidies across the
three subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh) subsidies.

33



(1) (2) (3) (4) (5)
State-Specific Subsidies Tract-Specific Subsidies

Baseline Welfare Max Damage Min Welfare Max Damage Min
I. Average Subsidy ( Thousands)
Midwest 10.0 15.4 15.9 15.3 15.8
Northeast 17.1 13.1 11.2 13.1 11.1
South 10.6 14.6 14.5 14.6 14.4
West 11.7 12.6 10.5 12.6 10.3

II. Installations per 1000HHs
Midwest 5.4 8.1 8.9 8.1 8.9
Northeast 20.3 11.3 11.0 11.3 10.9
South 6.6 9.0 9.3 9.0 9.3
West 11.9 13.1 11.3 13.1 11.2
National 9.9 10.3 10.0 10.3 10.0

III. Annual Damages O!set ( Millions)
CO2e 193.4 216.9 219.0 217.1 219.4
NOx 12.0 13.3 13.3 13.3 13.3
PM2.5 33.2 36.8 34.7 36.8 34.6
SO2 23.6 25.5 28.5 25.7 28.9
Total 262.3 292.6 295.4 292.9 296.1

Table 3: Panel I shows the average present discounted value of subsidies received for a 15-panel installation
for each census region. Panel II gives the simulated number of solar installations per 1000 households in the
model for each Census region. Panel III gives the total damages o!set by rooftop solar. All monetary values
are measured in 2014 dollars. See text for details on each simulation.
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(a) National optimal subsidies. (b) Baseline installations as a percent of optimal.

Figure 9: State-level nationally-optimal subsidies and misallocation for welfare-maximizing reforms. Panel
(a) gives the nationally-optimal state subsidies. Subsidies are measured as the present discounted value
associated with a 15-panel installation in 2014 dollars, averaged across all households in the state. Panel B
shows state-level installations under the current system as a percentage of installations under the nationally-
optimal system. These results are shown in table form in Online Appendix C.9.

they installed a 15-panel system. Several states in the Northeast and Northwest, areas with

relatively environmentally friendly power plants and little sunlight, have the lowest optimal

subsidies, at under 10 thousand dollars in present value. On the other end of the spectrum,

eight states have optimal subsidies valued at over 17 thousand dollars. In West Virginia,

one of these states, current subsidy levels are some of the least generous in the country at

under 6 thousand dollars. More generally, nationally-optimal subsidies are highest in the

Mid-Atlantic and lower Great Lakes and are lowest in the Northwest and Northeast.

Figure 9b and the second panel of Table 3 quantify the misallocation caused by the

current system of subsidies on the spatial distribution of solar panel installations.47 Current

installations in the Midwest and South are roughly 30% lower than under nationally-optimal

subsidies, while installations in the Northeast are 80% higher than the optimal level. These

results suggest that the current system of subsidies leads to a substantial misallocation of

solar panels across states.

Panel III of Table 3 summarizes the environmental cost of this misallocation. Switching

from the current subsidy scheme to the nationally-optimal scheme would increase annual

damages o!set by rooftop solar from 262.3 million to 292.6 million, equal to a 11.5% in-

crease in the aggregate environmental benefits of solar panels.48 A decrease in CO2 equivalent

47We find that almost all of the adjustment comes via the extensive margin, rather than the intensive
margin (number of panels per installation). In Online Appendix C.8, we show how the average installation
size changes across counterfactuals.

48These environmental benefits are considerably smaller than the environmental benefits of reallocating
panels found in Sexton et al. (2021). There are two main reasons for this di!erence. First, we consider a
government with much more limited policy instruments. Sexton et al. (2021) consider a planner who can
directly allocate panels across states subject to local capacity constraints. Here we consider a government
which can only influence installations through subsidies. Second, we utilize emissions data from 2019 rather
than data from 2007-2016. Holland et al. (2020) find that power plant emissions decreased dramatically
between 2010 and 2017. This decline was especially large in the Eastern interconnection, where emissions
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(a) Nationally-optimal subsidies (b) Baseline installations as a percent of optimal.

Figure 10: State-level nationally-optimal subsidies and misallocation for damage-minimizing reforms. Panel
(a) gives the nationally-optimal state subsidies. Subsidies are measured as the present discounted value
associated with a 15-panel installation in 2014 dollars, averaged across all households in the state. The color
scale censors subsidy levels below 5K and above 20K. Panel B shows state-level installations under the
current system as a percentage of installations under the nationally-optimal system. These results are shown
in table form in Online Appendix C.9.

emissions drives most of the environmental gains, with relatively minor e!ects on damages

from other pollutants.

6.2 Damage-Minimizing Reforms

An alternative social objective is to choose the system of subsidies that minimizes environ-

mental damages. In this section, we consider a government who chooses subsidies to minimize

the net present value of environmental damages, D (ELoad) , subject to the government bud-

get constraint. We formalize the government’s problem and present the first-order conditions

in Online Appendix B.5.

Figure 10 and the third columns of Tables A8 and Table 3 show the results. Like the

welfare-maximizing policies, the damage-minimizing policies are most generous in the Mid-

Atlantic and lower Great Lakes, and are least generous in the Northwest and Northeast.

However, the variation across states in subsidy generosity is greater than under the welfare-

maximizing subsidies: optimal damage-minimizing subsidies range from under 4 thousand

dollars to over 21 thousand dollars. The reallocation of solar panels induced by the damage-

minimizing subsidies would lead to a 12.6% increase in aggregate environmental benefits.

6.3 Tract-level Subsidies

In the results above, we found that optimally set state-level subsidies lead to large envi-

ronmental benefits relative to the current system of subsidies. Could subsidies set at a

are historically higher than in the Western interconnection. This decrease in variation of damages across
locations lowered the environmental benefits of reallocating panels across space.
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more granular geographic level lead to even larger gains? To answer this, we solve for the

welfare-maximizing and damages-minimizing subsidies when subsidy levels are allowed to

vary nonparametrically across census tracts.49

Columns (4) and (5) of Table 3 display the results. In both the welfare-maximizing

and damage-minimizing cases, the average subsidies across regions and the distribution of

installations with optimal tract-level subsidies are similar to those under optimal state-level

subsidies, and the damages o!set with optimal tract-specific subsidies are only slightly larger

than those with optimal state-specific subsidies. We conclude that the nationally-optimal

system of state-level subsidies can capture most of the gains of more geographically granular

subsidies.

6.4 Unconstrained Reforms

Our previous counterfactuals have focused on budget-neutral reforms. Here we analyze the

case where the government does not face an externally set budget constraint and maximizes

utility less environmental damages and government cost. In this case, the government’s

problem is to maximize
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where ς represents the marginal cost of public funds. We present results over a range of ς’s

from 1 to 1.5—for ς = 1, the government weights fiscal costs and household utility equally.

We can think of this as a setting in which there are no distortionary costs of raising public

funds, e.g. the government has access to lump-sum taxation.50 We present the first-order

conditions of the government’s problem in Online Appendix C.10.

The results are summarized in Table 4. The first two columns show results under the cur-

rent subsidy system and unconstrained nationally-optimal subsidies when we use a marginal

cost of funds (ς) equal to 1. Optimal subsidies slightly exceed current subsidies in the Mid-

west and South, but fall below current levels in the Northeast and West. Table A12 in

49Ai is constant within census tracts in our quantitative model, and therefore solar production within
census tract is simply proportional the number of panels installed. Thus, there is no unique nationally-
optimal system of subsidies when the planner can use both panel-based and production-based subsidies.
Therefore, we set per-panel subsidies to 0 in this exercise.

50Jacobs (2018) shows that the marginal cost of funds is also equal to one in a Mirrleesian framework with
the optimal tax system. A value of 1.3 is a commonly-used “middle of the road” estimate of the marginal
cost of public funds in the literature (Ballard, Shoven, and Whalley, 1985; Newhouse, 1992; Poterba, 1996;
Olken, 2007; Finkelstein and McKnight, 2008) while 1.5 is considered a “conservative” estimate (Heckman
et al., 2010; Finkelstein and Hendren, 2020).
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(1) (2) (3) (4)
Unconstrained Optimal

Baseline ς = 1 ς = 1.25 ς = 1.5
I. Average Subsidy ( Thousands)
Midwest 10.0 11.9 7.2 4.1
Northeast 17.1 9.9 5.6 2.7
South 10.6 11.2 6.7 3.6
West 11.7 9.5 5.3 2.5

II. Installations per 1000HHs
Midwest 5.4 6.0 4.1 3.1
Northeast 20.3 8.6 5.9 4.6
South 6.6 6.7 4.6 3.5
West 11.9 10.1 7.0 5.5
National 9.9 7.8 5.4 4.2

III. Annual Damages O!set ( Millions)
Total 262.3 218.6 147.4 113.4

IV. Annuitized Total Subsidies Paid ( Millions)
National 380.8 218.5 86.2 34.7

Table 4: Unconstrained Nationally-Optimal Subsidies. The first panel shows the average present discounted
value of subsidies received for a 15-panel installation for each census region. The second panel gives the
simulated number of solar installations per 1000 households. The third panel gives the annual environmental
benefits generated by residential solar panels. The final panel gives the total government spending on subsidies
converted into an annuity value. All monetary values are measured in 2014 dollars.

Online Appendix C.10 shows the state-level optimal subsides. These optimal subsidies result

in fewer installations nationally, with Panel II showing that installations under the optimal

subsidies are 80% of current levels nationally.

Panels III and IV show the annual environmental benefits of rooftop solar and the an-

nuitized government spending on subsidies. Switching to unconstrained nationally-optimal

subsidies decreases environmental benefits by 43 million dollars annually. However, the ac-

companying 162 million dollar decrease in fiscal costs dwarfs this decrease in environmental

benefits. The optimal subsidy scheme achieves 83% of the environmental benefits at 57% the

current cost.

To account for the additional costs of raising funds for solar subsidies from the use of

distortionary taxes, we now calculate the optimal unconstrained subsidy with alternative

values of ς, the marginal costs of public funds. In Columns 3 and 4 of Table 4, we recalculate

the optimal subsidies with ς = 1.25 and with ς = 1.5, respectively. With these larger values

of the marginal cost of public funds, the optimal amount of spending on solar subsidies

decreases, as raising money for subsidies entails an e”ciency cost. With ς = 1.25, optimal

spending on subsidies is only 23% of current levels, and with ς = 1.5, optimal spending is

less than one-tenth of current levels.
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Figure 11: Damages o!set per additional dollar of government funds associated with marginal increases in
production-based subsidies, skWh

j , around the current system of subsidies. All monetary values are measured
in 2014 dollars.

As discussed in the introduction, residential solar subsidies may be associated with ad-

ditional external benefits that we do not capture here. However, our results suggest that

these additional benefits would have to be quite large to justify the current spending levels

on these subsidies nationally.

6.5 Marginal Subsidy Increases

Relative to the current system of subsidies, what marginal subsidy increases are the most

cost-e!ective way to decrease damages? To answer this, we calculate the damages o!set per

additional dollar of government cost associated with marginal subsidy increases around the

current system of subsidies. Specifically, we first simulate the model 1) under the current

system of subsidies and 2) with marginally more generous subsidies of a given type in a given

state. We calculate the damages o!set per dollar of this particular subsidy as the di!erence in

damages between the two simulations divided by the di!erence in the fiscal cost. We repeat

this process for each subsidy type in each state.

Figure 11 shows the marginal damages o!set per dollar for production-based subsidies.51

There are large di!erences in damages o!set across states. For example, a small subsidy

increase in Washington only leads to 22 cents less environmental damages per dollar of

government funds. On the other hand, subsidy increases in West Virginia are highly cost-

e!ective—for an additional dollar of government spending, environmental damages decrease

by 80 cents. Subsidy increases in Ohio and Pennsylvania are also associated with damages

o!set per dollar of over 70 cents. These results imply that small, cost-neutral shifts in

subsidies across states could lead to substantial decreases in environmental damages. For

example, a cost-neutral shift from subsidies in Washington to subsidies in West Virginia

51Within each state, there are only small di!erences in the damages o!set per dollar across the three
subsidy types.
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would lead to decreases in environmental damages of 80 ↑ 22 = 58 cents for each dollar

reallocated. Put another way: if the goal of Washington policymakers were to reduce total

environmental damages, they would be significantly better o! subsidizing solar installations

in West Virginia, rather than in Washington.

7 Extensions, Robustness and Further Issues

7.1 Alternative Specifications of Household Utility

In our baseline specification, we specified εi (·), the function which dictates a household’s

nonpecuniary benefits of solar installation, as a function of the number of panels installed

and the local average education level and political leaning. In Online Appendix D.1, we as-

sess the sensitivity of our main results to this specification of the utility function by changing

the specification of εi (·). In each specification, we re-estimate the model given the alterna-

tive specification of utility and then solve for the optimal cost-neutral policy given the new

estimates of the household utility function. Across all specifications, we find similar optimal

subsidies, similar changes in installation rates, and similar environmental benefits.

7.2 Alternative Discounting of Future Subsidy Payments

In our baseline model, we assumed that households value production subsidies at the present

discount value of subsidy payments, calculated using the market interest rate. However,

De Groote and Verboven (2019) find that households use a much higher implicit interest rate

when evaluating the future subsidy payments associated with solar panel installations.

In Online Appendix D.2, we reestimate our model and recalculate the optimal subsidies

when households calculate the net present value of future subsidy payments using an implicit

discount rate of 15%, based on the estimates from De Groote and Verboven (2019). We have

two main takeaways from this extension. First, the change in household discounting of future

subsidy payments has important implications for the type of subsidy the planner chooses.

When households discount future subsidies more heavily than upfront subsidies, the social

planner relies less on production subsidies, as they are valued less than upfront subsidies.52

Therefore, in this extension, the social planner relies mostly on investment subsidies, whereas

the planner in our baseline results uses production subsidies most heavily. Our results echo

those from De Groote and Verboven (2019), who find that upfront investment subsidies are

more cost-e!ective than production subsidies at inducing installations. Second, the optimal

52We do not allow the government to set negative production subsidies. Without this constraint, the
government will heavily tax solar production.
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geographic distribution of subsidies and the optimal overall level of subsidy spending are

similar to our baseline results. We conclude that this alternative assumption about household

discounting does not change our main results about spatial misallocation of panels nor about

optimal levels of spending across space.

7.3 Line Losses

Our baseline model does not account for line loss: the electricity that is lost as electricity is

transmitted over the grid from a power plant to a consumer. Rooftop solar reduces line loss

by reducing the amount of electricity that needs to be transported across the grid.

In Online Appendix D.3, we re-calculate our main results in a model which accounts for

line loss, where we base our model of line loss on the model and estimates from Borenstein and

Bushnell (2022). In the extension, line losses are determined endogenously as a function of

the amount of electricity in each region that must be transmitted between central generation

plants and households. Therefore, residential solar o!sets damages not only by directly

producing power that would otherwise be produced by fossil-fuel plants, but also by reducing

transmission across the grid and the resulting line losses.

The takeaways are qualitatively the same as our main results. As expected, the environ-

mental benefits of solar panels increase. As a result, the total government spending under

the optimal unconstrained subsidies is higher than in the baseline case but still less than

under current policies. The welfare-maximizing and damage-minimizing cost-neutral reforms

generate increases in aggregate environmental benefits of 11.4% and 12.3%, respectively.

7.4 Transmission Constraints

In times when transmission lines are under heavy use, grid operators will limit the extent to

which electricity is moved over long distances to prevent transmission lines from overheating.

Our baseline model does not account for these transmission constraints because we assume

that a given power plant’s production level can always depend on excess load in other regions

within the plant’s interconnection. If transmission constraints are binding, however, the

plant’s power production is unlikely to depend on excess load in other regions because grid

operators will avoid transmitting electricity across regions.

We now consider a model extension that includes a stylized model of potentially binding

transmission constraints. We assume that if the excess load in a given region R exceeds a

certain threshold ELoadR, then the policy functions of power plants will depend only on the

excess load in their own region and not on excess load in other regions. Thus, we can express

the latent function for power plant k in region R as:
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In practice, we set ELoadR as the 75th percentile of excess load in a given region in

our data. We re-estimate the power plant policy functions via maximum likelihood and

recalculate the optimal policies with the updated policy functions. We present the results in

Appendix D.4. As in our baseline specification, we find that optimal unconstrained subsidies

are lower than current levels in the Northeast and the West, but are similar to or slightly

above current levels in the Midwest and South. We find that current spending on subsidies

exceeds the optimal level by about 45% in this specification.

7.5 Improved Storage of Nondispatchable Technology

A significant issue facing the expansion of renewable electricity generation is that solar and

wind are nondispatchable. Thus, these sources can only produce electricity when environ-

mental conditions are suitable—when the sun is shining, or the wind is blowing. One of

the leading solutions to this problem is an expanded capacity of electricity storage in the

form of batteries. In Online Appendix D.5, we consider a stylized way to incorporate storage

technology into our model. We allow nondispatchable electricity to be stored and used pro-

portionately to the total load. E!ectively this means we reallocate solar and wind production

from their exogenous time profile of production to match the time profile of demand, which

loosely matches the optimal behavior of storage owners arbitraging electricity across time to

maximize profits.

We find that the storage technology itself generates considerable environmental benefits.

However, storage technology does not substantially change the environmental benefits of

solar panels across locations. Therefore, we find that adding storage technology does not

qualitatively change the optimal cost-neutral or unconstrained reforms, the distribution of

installations under the optimal subsidies, or the environmental benefits of switching to op-

timal subsidies. See Butters, Dorsey, and Gowrisankaran (2021) or Holland, Mansur, and

Yates (2022) for a detailed treatment of storage technology.
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7.6 Cleaner Electricity Production

Electricity production in the United States has become considerably cleaner over the past

few decades. Our baseline results quantify the value of optimizing solar panel subsidies given

current electricity production technology. Here, we are interested in determining what would

happen to our main results if the grid were considerably cleaner than it is presently.

Increased production of utility-scale renewables and fuel switching (from dirty to clean

coal and from coal to natural gas) are the two primary drivers of the reduction in emissions

from electricity generation. We perform four additional simulations to assess how further

clean-up of electricity production would a!ect our results. First, we find the optimal subsidies

under expanded production from utility-scale solar and wind based on three scenarios of

projected renewable expansion by 2030 from the EIA (Nalley and LaRose, 2022). Second,

we recalculate results considering each coal plant to have “cleaned up” production. Our

method of cleaning up coal plants is to adjust marginal damages from coal plants so that the

mean and standard deviation of marginal damages from coal plants match that of natural

gas plants.

We present the results in Online Appendix D.6. Intuitively, we find that if electricity

production becomes cleaner, the environmental damages o!set by solar panels will decrease.

Therefore, the optimal unconstrained subsidies for residential solar with cleaner electricity

production are lower than in our baseline case, suggesting optimal unconstrained subsidies

will be even lower in the future if electricity production continues to become cleaner. However,

there remains considerable heterogeneity in the marginal damage of electricity production

across space. Thus, we still find substantial benefits in switching from the current subsidies

to optimal cost-neutral subsidies.

7.7 Distributional E!ects

The proposed switch in the system of subsidies could have distributional impacts through

two channels—directly through a change in subsidies received by households and indirectly

through the induced change in pollutant damages caused by electricity generation. House-

holds who install solar panels, and therefore receive subsidies, tend to be wealthy (Borenstein

and Davis, 2016). Our proposed nationally-optimal subsidies will likely be progressive relative

to the current subsidies since switching from current to optimal generally involves decreasing

subsidies in high-income states such as Massachusetts and increasing subsidies in low-income

states such as West Virginia. For this same reason, switching to optimal subsidies will likely

improve the distribution of damages caused by electricity generation. Similarly, Dauwal-

ter and Harris (2023) find that shifting solar capacity to locations where the environmental
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Dependent Variable:
Log Installations per Capita

(1) (2) (3) (4)
Historically-Adjusted Subsidies ( 1000s) 0.0592*** 0.0604*** 0.0597*** 0.0707***

(0.00588) (0.00472) (0.00549) (0.00882)

Income Tax NO YES YES YES
Sales Tax NO NO YES YES
Property Tax NO NO NO YES
Distance Bandwidth 10 10 10 10
Observations 6,052 6,052 6,052 6,052

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Regression of log installations per capita on “historically-adjusted” measures of subsidy generosity
from Sexton et al. (2021). Sample is limited to tracts within 10 miles of state borders. Historically-adjusted
subsidy generosity measures the net present value of subsidies a household would expect to receive given
subsidies in place in the year of installation, measured in thousands of 2014 dollars.

benefits are greatest would lead to environmental benefits for disadvantaged groups.

We have refrained from accounting for distributional e!ects when calculating optimal

subsidies, as this paper is primarily concerned with the spatial misallocation of solar due

to di!erences in the generosity of solar subsidies across states. Seriously tackling the dis-

tributional e!ects of solar subsidies requires a di!erent set of policy instruments than those

analyzed here, such as means-tested subsidies for solar installations.53

7.8 Installation Elasticities with Historical Subsidy Measures

As described earlier, our model of solar installation captures the long-run installation behavior

of households facing a given menu of subsidies. One potential issue is that we estimate the

model using solar subsidies from 2017 when, in fact, many of the installations observed in

our data were made before 2017 by households facing pre-2017 subsidy levels.

To get a sense of how accounting for pre-2017 subsidies would a!ect our estimates of the

household installation model, we perform a simple exercise using a measure of “historically-

adjusted” subsidy generosity from Sexton et al. (2021). To calculate this measure, the authors

first calculate the net present value of subsidies a household in a given state would expect

to receive, given the subsidies in place from each year from 2000 to 2017. They then take

the average over these yearly measures, weighing them by the number of installations in

each year.54 This is a measure of the net present value of subsidies from a solar installation,

53Colas and Reynier (2024) solve for the optimal income-contingent subsidies for residential solar panels.
54To generate the subsidy measures reported in Sexton et al. (2021), the authors then divide the net present

value of subsidies by the total kWh of electricity an installation is expected to produce, such that the reported
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adjusting for the fact that households have faced di!erent subsidies based at the time when

they installed.

We then replicate the border discontinuity regressions from Table 1 using this historically

adjusted measure of the net present value of subsidies. Specifically, we regress tract-level log

installations per capita on this historically adjusted measure of the net present value of subsi-

dies, limiting our sample to tracts within 10 miles of state borders. Table 5 shows the results.

Across all specifications, we estimate that a 1000 dollar increase in the historically-adjusted

net present value of subsidies is associated with a 5.9% to 7.1% increase in installations per

capita, similar to the results we found in Table 1, when we used our baseline subsidy measures.

These results suggest that not accounting for the profile of subsidies households have faced

over time may not introduce significant bias when estimating the long-run responsiveness of

installation to subsidies.

8 Conclusion

We have used a structural model of solar panel demand and electricity production to calculate

the nationally-optimal system of subsidies for residential solar panels and to quantify the

benefits of switching to such a system. Our main conclusions are that the current system of

subsidies leads to a spatial misallocation of panels, and nationally spending on subsidies is

too high. However, our results do not necessarily imply that the US should lower funding

for renewable energy programs in general, rather that government funds spent on subsidies

for residential solar subsidies would be better spent on other programs. These alternative

programs could include other investments in renewable energy, such as subsidies for utility-

scale solar or wind power, both of which provide energy at lower cost than residential solar

(Lazard, 2023).

Future work can extend our model to incorporate endogenous entry and exit of electricity

generators, as in Holland, Mansur, and Yates (2022). In that case, residential solar subsidies

could disincentivize entry of new generators, which could be costly from an environmental

perspective if the new generators employ cleaner technology than incumbents. It would also

be interesting to utilize similar frameworks to analyze other consumer subsidies for energy-

related products, such as subsidies for home insulation, small wind systems, and geothermal

heat pumps. We leave these questions for future work.

measure represents the subsidy received per kWh. We do not perform this conversion so that our measure
represents the total net present value of subsidies for a given installation, measured in thousands of dollars.
This makes our estimates here easier to compare to our regressions in Section 4.2.
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Figure A1: Daily solar radiation
(
kWh/m2/day

)
by census tract from Deepsolar.

A Data Appendix: For Online Publication

A.1 Deep Solar

We obtain data on solar panel installation from the Deepsolar database, which is created by

applying a novel semi-supervised deep-learning framework to satellite imagery from Google

Static Maps from the year 2016 (Yu et al., 2018). The Deepsolar model predicts the number

and size of solar panel installations across the contiguous United States. We use these tract-

level data on the number and size of residential solar systems to give us our empirical analogs

of Mt and installation size Ni.

Deepsolar also estimates the daily solar radiation in each census tract, measured in kWh

per square meter per day, which we show in Figure A1. For any missing tracts in the

Deepsolar data, we impute daily solar radiation by taking the simple mean of any bordering

tract with non-missing values.

A.2 Google Project Sunroof

For data on solar irradiance, Ai, and number of available spaces for panels N̄i, we utilize

tract-level data from Google Project Sunroof (GPS). GPS begins with satellite imagery from

Google Maps. It then applies a deep-learning algorithm to create 3D models of rooftops.

These 3D models allow GPS to estimate the amount of sunlight a given rooftop receives over

the course of the year, taking into account changes in the position of the sun over the course

of the day and year. These 3D models are used to calculate the amount of available space

for solar panels.

We assume that all households within a given tract have access to the same solar irra-

diance, which we measure as total solar energy generation potential for the average panel
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in a given tract. For number of potential panels N̄i, the GPS data provide the number of

buildings in each tract with di!ering amounts of space available for solar panel installations.

This e!ectively gives us the full distribution of N̄i for households within a given tract.

One potential issue with the GPS data is that it might also capture potential space for

solar panels that is not suitable for residential solar (for example not being part of someone’s

house). To deal with this, we limit potential solar sites in Google Project Sunroof to those

with space available to 42 MW of solar panels, corresponding to the 99.9th percentile of the

largest solar panel in the Tracking the Sun data described in Online Appendix A.3. The

results are not sensitive to this censoring.

A.3 Tracking the Sun

Tracking the Sun is an aggregation of solar system installation data created by the Lawrence

Berkeley National Lab. The Lawrence Berkeley National Lab collects these data from existing

public databases and directly from state agencies, utilities, and other organizations. The

result is 2.5 million solar installations from the last two decades, with installation price,

system size, and subsidies geographically identified at the zip code level, along with other

information about the installed solar system. The installations cover nearly 80 percent of all

installed solar systems in the U.S. but include only 25 states. Some of these states do not

include price data for any installations. Across all states, about a quarter of observations for

residential solar system installations are missing price data.

We use the Tracking the Sun data to estimate prices for solar systems, using total cost

and number of panels installed to estimate a fixed cost of installation and variable, per-panel

cost. Since many states have no data, we assume pricing functions are common within each

census region. We filter the Tracking the Sun data to include residential installations between

2014 and 2018 that are not missing price or the total number of panels, which leaves us with

over 720 thousand observations. Additionally, we censor installation costs at the 0.5th and

99.5th percentiles and convert them into 2014 dollars.

A.4 System Advisor Model

While we obtain annual electricity generation for solar panels from Google Project Sunroof,

those data do not include any information on how that production varies by hour within a

year. Thus, we use the System Advisor Model (SAM) from the National Renewable Energy

Laboratory to estimate hourly electricity profiles for each county (Blair, Dobos, and Gilman,

2013). SAM is an open-source program that estimates the performance of solar systems

and other renewable power systems. We follow the methodology in Sexton et al. (2021),

2



Figure A2: Hourly electricity generation for a standard solar panel for six example counties.

calculating electricity generation for a system with typical parameters where tilt matches

latitude and panels point south. The only di!erence is that we estimate generation for

systems at the centroid of each county. We use weather data from Sengupta et al. (2018) for

a county’s typical meteorological year.

The model’s output is the hourly production of a solar system over the course of a year

in each county. We create hourly profiles by dividing the hourly generation by each county’s

total annual generation. Figure A2 for hourly production for examples of the results for six

counties.

A.5 State Electricity Prices

Figure A3 presents the state-level electricity prices we use in our empirical analysis. California

and states in the Northeast have the highest electricity prices at over 15 cents per kWh. Most

of the country has prices between 8 and 10 cents per kWh.

A.6 Subsidies

We calculate skWh

j as the sum of per-kWh rebates and the average price of Solar Renewable

Energy Certificates. In some states (e.g. Massachusetts and New Jersey), households can

only sell Solar Renewable Energy Certificates for a certain number of years after installation.

For these states, we only calculate the value of Solar Renewable Energy Certificates for years

3



Figure A3: State electricity prices ($/kWh)

(a) Panel-based subsidies (b) Cost-based subsidies (c) kWh-based subsidies

Figure A4: Expected subsidy for a 15-panel system by subsidy type in 2014 dollars.

in which households are permitted to sell the credits. We calculate sCost

j as the sum of

federal investment tax credits, state investment tax credits, sales tax exemptions, and the

net present value of property tax exemptions. We translate per-KW rebates to sPanelj by

assuming a constant 0.25 KW per panel. Maryland has a fixed rebate of 1000 per system.

We translate this into a per-panel subsidy by dividing this amount by the average number

of panels in an installation (15). Many states place a cap on the maximum amount of a

type of subsidy a household can receive. We enforce these state-level maxima in estimation.

Figure A4 shows the state level expected subsidies for a 15-panel system for each type of

subsidy: per-panel, cost, and kWh. Most of the current subsidies take the form of cost-based

subsidies, while few states o!er kWh and panel-based subsides.

A.7 Power Plants

The following describes how we use the Open Grid Emissions (OGE) data.55 These data

have several advantages over the commonly used raw electricity data from the EIA and EPA,

which we describe below.
55OGE is a relatively new dataset and under active development. We use v0.3.0 in this analysis.
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Plant level The hourly, plant-level data from OGE give net electricity generation and

emissions of SO2, NOx, CO2, and CO2 equivalent. OGE derives these data primarily from

the EPA CAMD, which reports hourly gross electricity generation and emissions at the unit

level, where units typically correspond to generators connected to a single emissions stack.

OGE adjusts gross generation to account for electricity losses before entering the grid and

aggregates these units to the facility level, which we refer to as power plants. Additionally,

OGE removes the portion of emissions from fuel burned for heat for combined heat and

power plants. OGE’s static plant attributes table has a latitude and longitude for each

plant, allowing us to match each power plant to a county.

We also collect each plant’s nameplate capacity and stack height. Nameplate capacities

are from EIA Form 860 and represent the maximum amount of electricity that a generating

unit is rated to produce. We sum the nameplate capacities of generators in a plant to

calculate plant-level nameplate capacities. Thirty-seven plants are missing from the EIA

860 data, for which we use nameplate capacities from the EPA’s eGRID files from 2019 and

2020. We obtain stack heights from the EPA CAMD and set a plant’s stack height as the

median stack height of units the within that plant. Thirty plants are missing from these

data, for which we set the stack height equal to the median stack height of all plants of the

same primary fuel category. We use a power plant’s stack height and location to assign the

marginal damage coe”cient in the AP3 model. We opt for CO2e over CO2 when calculating

damages as it includes emissions of the more potent greenhouse gasses methane and nitrous

oxide in addition to CO2.56

The EPA CAMD hourly unit-level data only include fossil-fuel plants with greater than

25 MW of generating capacity, leaving a non-negligible portion of generation and emissions

unreported. One of the main goals of OGE is to ensure complete coverage of the electricity

generation sector. In essence, they combine the reported hourly plant-level data from the EPA

CAMD with hourly balancing authority-fuel category level data from the EIA to calculate a

‘residual’ profile, the unreported production from small or non-fossil-fuel power plants.

There are 9,167 plants with hourly production and emissions in the 2019 OGE data.

About a third of the plants do not have observations for every hour in 2019. We fill in any

generation and emissions values between the first and the last hour a plant appears in the

data with zeros. After removing 4,312 non-dispatchable plants (wind and solar), 193 plants

with zero or negative reported net electricity generation, and 64 plants with no variation in

net electricity generation, we have 4,598 power plants—giving us nearly 40 million plant-hour

observations.
56As detailed in the OGE documentation, they calculate CO2e using the global warming potential of each

GHG according to the IPCC’s 5th Assessment Report. They calculate methane and nitrous oxide emissions
using a constant, fuel-specific emissions factor.
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Emissions rates OGE’s hourly data does not include PM2.5 emissions, as the EPA CAMD

and the EIA do not report PM2.5 emissions from power plants. As a part of the eGRID

project, the EPA has collected annual PM2.5 emissions from the National Emissions Inven-

tory (NEI) and matched those emissions to electricity-generating units to calculate an average

PM2.5 emissions rate. We match these estimated annual rates to our power plants, taking

the production-weighted average over units within a power plant. We use the fuel category

median value for the power plants missing PM2.5 emissions rates. This imputation only

applies to less than 10% of total electricity production. We censor PM 2.5 emissions rates

at the 95th percentile for each fuel category. A few power plants have emissions rates orders

of magnitude larger than is reasonable—these are small plants that do not directly report

their hourly emissions or generation in the EPA CAMD data, and thus must be imputed by

OGE.57 For these plants, we set emissions rates equal to the median for their fuel type.

Regions We follow Holland et al. (2016) in our definitions of regions for the electricity

generation model. OGE assigns plants to the balancing authority in charge of dispatching

the plant. We then assign balancing authorities to regions. There are six NERC regions

in the contiguous US. Four of these (MRO, RFC, NPCC, and SERC) fall within the East-

ern Interconnection, while the other two (WECC and TRE) are in the Western and Texas

Interconnections, respectively.

Most BAs fall entirely within one NERC region, but some BAs have generating units in

multiple NERC regions. For all BAs except MISO and PJM, we assign the BA to the NERC

region with the most overlapping generating units between the BA and NERC region using

the static plant attributes data from OGE. We assign the MISO BA to the MRO NERC

region and the PJM BA to the RFC NERC region. Finally, we give California its own NERC

region, consisting of five BAs: BANC, CISO, IID, LDWP, and TIDC. Figure A5 shows a

map of these regions. We used the eGRID power profiler to assign approximate service areas

for each region.

Table A1 shows summary statistics describing generation and average emissions in each

region, highlighting the heterogeneity in average emissions between regions. This is largely

driven by di!erences in the fuel mix between regions. Table A2 shows a summary of genera-

tion and emissions by fuel category.

Excess Load We calculate the excess load (total demand minus production from nondis-

patchable generating units) within each region using OGE’s power sector-level data. These

data give hourly net generation by fuel category for each balancing authority. We perform

57These plants’ EIA ID’s are 2221, 2528, 2503, 50626, and 50931.
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Figure A5: Map of region service areas

Table A1: Summary statistics on power plants by region

Net Generation Emissions (lb/MWh)

Region Number of plants Total (TWH) % Fossil Fuel NOx SO2 CO2e

CAL 642 1,623 58.9 0.66 0.07 663
MRO 1,168 8,116 79.7 0.96 1.03 1,343
NPCC 725 2,291 46.1 0.41 0.06 540
RFC 645 7,831 61.8 0.50 0.51 861
SERC 572 9,396 67.4 0.49 0.35 918
TRE 179 3,348 87.2 0.64 0.70 1,069
WECC 667 4,776 61.5 0.75 0.36 1,011
Total 4,598 37,382 68.2 0.64 0.53 990

Table A2: Summary statistics on power plants by fuel category

Emissions (lb/MWh)

Fuel Number of plants Net generation (TWH) NOx SO2 CO2e

Biomass 577 542 5.54 1.12 1,569
Coal 258 9,457 1.44 1.95 2,221
Natural Gas 1,685 16,027 0.41 0.03 906
Nuclear 60 8,136 0.00 0.00 5
Petroleum 517 25 3.98 4.98 1,907
Geothermal 60 155 0.00 0.35 137
Hydro 1,332 2,854 0.00 0.00 0
Other 43 49 0.08 0.00 105
Waste 66 135 5.83 1.32 3,722
Total 4,598 37,382 0.64 0.53 990

7



minor data cleaning to ensure that misreporting in the underlying data does not impact our

estimates. We consider values above 1.5 times the 99th percentile for that balancing author-

ity and fuel category to be outliers. We replace outliers with the value from the previous

hour as long as the previous hour’s value is not also an outlier. If the previous hour is an

outlier, then we use the value from the same hour in the previous day as long as that is not an

outlier. If the previous hour and the previous day are outlier values, we censor to 1.5 times

the 99th percentile.58 We then calculate the total load within a region as the sum of net

generation across all balancing authorities and fuel categories within a region. Excess load is

the total load in a region minus net generation from solar and wind, the two nondispatchable

energy sources.

B Theory and Quantitative Appendix: For Online Pub-

lication

B.1 States Without Net Metering

In the general model above, we assumed that households could sell back electricity produced

by their solar panels at price pj. This is the case if the state o!ers net-metering, which is

o!ered in all but 9 in our sample.59 In the states where net metering is not o!ered, households

can sell back electricity to the grid at price psalej ↓ pj. Let Ahome
i

(
Ni, {eit}Tt=0

, {Ait}Tt=0

)
give

the discounted sum of energy that is used at home, written as a function of panels installed,

electricity consumption, and the stream of solar irradiance. Let Agrid
i

(
Ni, {eit}Tt=0

, {Ait}Tt=0

)

be the discounted sum of energy that is sold back to grid, such that Ahome
i (·)+Agrid

i (·) = Ai.

We can write the budget constraint for households in states without net metering as

c+ pj
(
e↑miNiA

home
i (·)

)
︸ ︷︷ ︸

Cost of electricity

+mi

(
1↑ sCost

j

)
pInsj (Ni)

]
︸ ︷︷ ︸

Net cost of installation

=

yi +mi



NiAis
kWh

j︸ ︷︷ ︸
kWh Subsidy

+ Nis
Panel

j︸ ︷︷ ︸
Per-Panel Subsidy

+ psalej NiA
grid
i (·)

︸ ︷︷ ︸
Electricity sold to grid



 . (16)

In estimating and simulating the model, we assume that the household’s optimal elec-

58This process mimics that used by the EIA when aggregating net generation by balancing authority to
the region level, see the “Net Generation” section on this page.

59Idaho, Tennessee, Texas and Alabama do not have statewide mandatory net-metering policies. Idaho does
not have state net-metering policy but each of the state’s three investor-owned utilities have a net-metering
policy. Five other states in our sample have distributed generation rules other than net-metering.
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tricity consumption, {eωit}
T
t=0

, is independent of the household’s installation decision. Again

letting Nω
i represent the optimal choice of panels, we can then summarize the decision for

households in states without met metering as

Vi = max
Ni,mi→{0,1}

+mi [µ̂ij (Ni) + εi (N
ω
i )] ,

where

µ̂ij (Ni) = NiAi

(
p̂j + skWh

j

)
↑

(
1↑ sCost

j

)
pInsj (Ni) +Nis

Panel

j

and where p̂j = psalej

Agrid
i

(
Ni,{eωit}T

t=0
,{Ait}Tt=0

)

Ai
+ pj

Ahome
i

(
Ni,{eωit}T

t=0
,{Ait}Tt=0

)

Ai
is the average of the

purchasing and sales price of electricity, weighted by the fractions of electricity the household

uses at home and sells back to the grid at the optimum.

For data on psalej , we use the marginal cost of electricity as measured by Borenstein and

Bushnell (2022). One challenge empirically is that we do not have dissagregated data on

Agrid
i (·) or Ahome

i (·). Therefore, we assume that the amount of electricity that is sold back to

the grid is given by the reduced-form expression Agrid
i =

(
Ni, {eωit}

T
t=0

, {Ait}Tt=0

)
= AiCNi,

where C is a constant.

The household’s optimal number of panels is then given by

Nω
i = min


N̄i,↑


εµij

εNi
+ ε1N

2
(
ε2N ↑ CAi

(
pj ↑ psalej

))


.

where, as before,

µij (Ni) = NiAi

(
pj + skWh

j

)
↑
(
1↑ sCost

j

)
pInsj (Ni) +Nis

Panel

j .

We calibrate C such that a household with the average number of panels sells 30% of their

electricity back to the grid.60

B.2 Maximum Likelihood Estimation of Power Plant Policy Func-

tions

Let yokt denote observed production from power plant k in time t, and let f̂k (ELoadt|⇁k) =

fk (ELoadt, ϑkt)↑ϑkt denote the deterministic portion of the latent variable for power plant k

in time t, written as a function the ⇁0

k, ⇁
1

Rk and ⇁2

Rk parameters, which we collective denote

by ⇁k. The log-likelihood contribution of a given hour of power plant k’s production is

60https://www.seia.org/initiatives/net-metering
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logLkt

(
ELoadt|⇁k, ↼

2

k

)
= (yokt = 0)≃ log


$


f̂k (ELoadt|⇁k)

↼k


+

(yokt → (0, ȳk))≃ log


1

↼k
0


yokt ↑ f̂k (ELoadt|⇁k)

↼k


+

(yokt ↔ ȳk)≃ log


1↑ $


ȳk ↑ f̂k (ELoadt|⇁k)

↼k


,

(17)

where (·) represents an indicator functions which turns on if yokt is equal to a given value

or falls within a certain range, $ is the standard normal CDF, and 0 is the standard normal

PDF. We choose the structural parameters for each power plant k by maximizing the sum

of log likelihood contributions over all hours for that power plant. We restrict the parameter

estimates such that output is weakly increasing in excess load for each region over the range

of excess load observed in the data.

B.3 Details: Cost-Neutral Reforms

We can express the government’s constrained maximization problem as the Lagrangian

W =



i

Vidi↑D (ELoad)↑ ς




j



i→Ij
sijm

ω
i di↑G


, (18)

where D (ELoad) is total environmental damages, sij = sPanelj Nω
i + skWh

j AiNω
i + sCost

j pInsj (Nω
i )

is the total subsidy paid to household i conditional on installation, and G is the maximum

amount the government can spend on subsidies.

The nationally-optimal set of subsidies must satisfy the first-order conditions of the

government’s problem. Taking the derivative of W with respect to a given subsidy type

ϱ → {kWh,Panel,Cost} in state j yields

ϖW

ϖsϑj
=



i

ϖVi

ϖsϑj
di+



i

T

t=0

Ait

(1 + r)t


ϖDt

(
ELoadSB

t

)

ϖESolar

Rt




↑↘mi

ϑNω
i +mω

i

ϖNi

ϖsϑj


di

↑ ς



i

↑↘mi
ϑsijdi↑



i

mω
i

ϖNi

ϖsϑj

ϖsij
ϖNi

di↑


i

mω
i

ϖsij
ϖsϑj

di


, (19)

where ELoadSB
t denotes the excess load in time t evaluated at the nationally-optimal (welfare-

maximizing) system of subsidies.
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By the envelope theorem we have εVi

εsεj
= mω

i
εsij
εsεj

, which tells us that the utility gain

for households is simply equal to the value of the increase in subsidy for non-additional

households, holding the number and size of installations constant.

Plugging this into (19) and setting the derivative equal to 0 yields



i

T

t=0

Ait

(1 + r)t


ϖDt

(
ELoadSB

t

)

ϖESolar

Rt




↑↘mi

ϑNω
i +mω

i

ϖNi

ϖsϑj


di

↑ ς



i

↑↘mi
ϑsijdi↑



i

mω
i

ϖNi

ϖsϑj

ϖsij
ϖNi

di


↑ (ς↑ 1)



i

mω
i

ϖsij
ϖsϑj

di = 0, (20)

This can be rewritten as



i

↑↘mi
ϑdi≃





∫
i
↑↘mi

ϑ
∑T

t=0

Ait

(1+r)t


εDt(ELoadSB

t )
εESolar

Rt

N
ω
i

∫
i
↑↘mi

ϑdi
↑ ς

∫
i
↑↘mi

ϑsijdi∫
i
↑↘mi

ϑdi



+



i

ϖNi

ϖsϑj
≃





∫
i m

ω
i
εNi

εsεj

∑T
t=0

Ait

(1+r)t


εDt(ELoadSB

t )
εESolar

Rt


∫
i
εNi

εsεj

↑ ς

∫
i
εNi

εsεj

εsij
εNi∫

i
εNi

εsεj



+

(1↑ ς)Mj

∫
i m

ω
i
εsij
εsεj

di
∫
i m

ω
i di

. (21)

Finally, plugging in the definitions of
εMj

εsεj
,
↑↑↘
#Dϑ,ext

j , ↑↘s ϑ,ext
j ,

εNj

εsεj


Mst

j

,
↑↑↘
#Dϑ,int

j ,
↑↘
εs
εN

ϑ,int
j , and εsij

εsεj

yields (8).

B.4 Numerical Algorithm for Calculating Optimal Subsidies

In this appendix, we outline the numerical algorithm we use to solve for the welfare-maximizing

subsidies.

1. Make a guess of the marginal cost of public funds, ς. Call this guess ς̂.

2. Make a guess of the set of subsidies. Let this matrix of all types of subsidies in all

states be denoted by ŝ.

3. Given the current guess of subsidies, ŝ, and the guess of the marginal cost of public

funds, ς̂, calculate the first-order conditions of the government’s problem for each
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subsidy type and each state given by (8). We use analytical derivatives to evaluate

εMj

εsεj
,
↑↑↘
#Dϑ,ext

j , ↑↘s ϑ,ext
j ,

εNj

εsεj


Mst

j

↑↑↘
#Dϑ,int

j , and
↑↘
εs
εN

ϑ,int
j .

4. If all of the first-order conditions are su”ciently close to 0, move on to the next step.

If not, update the guess of the subsidies and return to Step 3.

5. Given the current guess of subsidies, calculate the total government cost.

6. If the government cost is su”ciently close to G, then the current guesses, ς̂ and ŝ, solve

the constrained maximization problem. If not, take a new guess for ς̂ and return to

Step 2.

B.5 Details: Damage-Minimizing Subsidies

The government’s problem is to choose subsidies to minimize national damages, D (ELoad),

subject to the budget constraint that the total spending on subsidies cannot exceed some

value G: 

j



i→Ij
sijm

ω
i di ↓ G,

where sij = sPanelj Nω
i + skWh

j AiNω
i + sCost

j pInsj (Nω
i ) is the total subsidy paid to household i

conditional on installation, and G is the maximum amount the government can spend on

subsidies.

We can express this constrained optimization problem as the Lagrangian

W = ↑D (ELoad)↑ ς




j



i→Ij
sijm

ω
i di↑G


. (22)

Taking the derivative of W with respect to sϑj yields

ϖW

ϖsϑj
=



i

T

t=0

Ait

(1 + r)t


ϖDt

(
ELoadMD

t

)

ϖESolar

Rt




↑↘mi

ϑNω
i +mω

i

ϖNi

ϖsϑj


di

↑ ς



i

↑↘mi
ϑsijdi↑



i

mω
i

ϖNi

ϖsϑj

ϖsij
ϖNi

di↑


i

mω
i

ϖsij
ϖsϑj

di


, (23)

where ELoadMD
t denotes the excess load in time t evaluated at the nationally-optimal (damage-

minimizing) system of subsidies.

As in Online Appendix B.3, we can again use εVi

εsεj
= mω

i
εsij
εsεj

by the envelope theorem.
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Plugging this in and using the definitions of
εMj

εsεj
,
↑↑↘
#Dϑ,ext

j , ↑↘s ϑ,ext
j ,

εNj

εsεj


Mst

j

↑↑↘
#Dϑ,int

j ,
↑↘
εs
εN

ϑ,int
j ,

and εsij
εsεj

yields (24), which gives the first-order condition for each subsidy type in each state

j:

ϖMj

ϖsϑj
≃
(↑↑↘
#Dϑ,ext

j ↑ ς↑↘s ϑ,ext
j

)

︸ ︷︷ ︸
Extensive Margin

+
ϖNj

ϖsϑj


Mst

j

≃

↑↑↘
#Dϑ,int

j ↑ ς

↑↑↘
ϖs

ϖN
ϑ,int
j



︸ ︷︷ ︸
Intensive Margin

↑ ςMj
ϖsij
ϖsϑj︸ ︷︷ ︸

Mechanical E!ect

= 0. (24)

These optimality conditions for a damage-minimizing planner share a similar structure to

those of the welfare-maximizing planner given by (8). The exception is how the two planners

value increases in subsidies given to non-additional households, which are represented the

third term in each of the first-order conditions (“Mechanical E!ect”). For the damage-

minimizing planner, increased subsidies for these non-additional households entail a fiscal cost

with no additional decrease in damages. Therefore, the number of non-additional households

(Mj) enters negatively into the first order condition. The welfare-maximizing planner, on

the other hand, values the increase in utility associated with increases in subsidies for non-

additional households. Therefore, each additional dollar of subsidies for a non-additional

household is valued at (1↑ ς), reflecting both this increase in utility and the fiscal cost.

C Results Appendix: For Online Publication

C.1 Installation Prices

Table A3 shows the results for estimating solar system installation prices using the Tracking

the Sun data using the following regression,

pInsijt = p0,InsR(j) + p1,InsR(j)Nijt + p2,InsR(j) (t↑ 2017) + ϑijt, (25)

where pInsijt is the installation cost paid by household i in state j and year t, Nijt is the number

panels in the installation, p0,InsR(j) is a fixed cost, p1,InsR(j) is a per-panel cost, p2,InsR(j) is a linear time

trend for year t, and R(j) is the Census Region containing state j. The table shows results

for the full sample and each region, where the intercept gives the fixed installation cost in

2017, and the coe”cient on the number of panels is the per-panel cost in 2017. The linear

model is a good fit for the data, as seen in Figure A6, which shows our fitted line against a

flexible smoothing function for each region.
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Table A3: Solar system installation prices

Dependent Variable: Total Cost
Census Region Full sample Midwest Northeast South West
Model: (1) (2) (3) (4) (5)

Variables

Constant 5,899.5↔↔↔ 4,784.8↔↔↔ 1,825.2↔↔↔ 8,626.4↔↔↔ 7,048.1↔↔↔

(32.9) (634.1) (62.0) (375.3) (39.6)
Number of Panels 918.1↔↔↔ 1,060.0↔↔↔ 1,062.1↔↔↔ 703.0↔↔↔ 863.8↔↔↔

(1.6) (26.3) (2.6) (14.9) (2.1)
Year (Relative to 2017) -577.5↔↔↔ -2,806.6↔↔↔ -1,165.5↔↔↔ 630.1↔↔↔ -338.3↔↔↔

(9.2) (192.6) (15.3) (77.9) (11.2)

Fit statistics

Observations 720,665 1,097 171,306 12,354 535,908
R2 0.53 0.61 0.71 0.46 0.44
Adjusted R2 0.53 0.61 0.71 0.46 0.44

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Sample limited to between 2014 and 2018, prices measured in 2014 dollars.

Figure A6: Estimation results for solar system price regression, where the dashed black line is our estimated
model in 2017 and the solid blue line shows the fit of a generalized additive model for installations in 2017.
Installation prices are measured in 2014 dollars.
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(1) (2) (3) (4) (5) (6)
Monetary Benefits 0.106*** 0.105*** 0.0818*** 0.0850*** 0.0908*** 0.0938***

(0.0353) (0.0350) (0.0166) (0.0196) (0.0162) (0.0182)

Observations 41,776 41,776 41,776 41,776 41,776 41,776
R-squared 0.187 0.201 0.388 0.411 0.421 0.445
Demographic Controls NO YES NO YES NO YES
Region FE NO NO YES YES NO NO
Division FE NO NO NO NO YES YES

*** p<0.01, ** p<0.05, * p<0.1

Table A4: Regression of log installations on the net present value of total monetary benefits associated with
solar panel installations. Monetary benefits measured in thousands of 2014 dollars. Standard errors clustered
by state.

C.2 Relationship Between Installations and Monetary Incentives

Table A4 regresses tract-level log installations on the monetary benefits of installation, where

again we calculate the monetary benefits of installation as µij (Nω
i ) evaluated at Nω

i = 15, the

average number of panels in a solar system in the data. Specifications with “Demographic

Controls” include controls for tract-level college completion percentage and percent of voters

who voted Democrat in the 2016 presidential election. Columns (3) and (4) add Census

region fixed e!ects while columns (5) and (6) include Census division fixed e!ects. Across all

specifications, we find that a 1000 increase in monetary benefits for a 15-panel installation

is associated with a 8.2% to 10.6% increase in installations.

C.3 Installation Size Regressions

Table A5 regresses tract-level data on average number of panels per installation on monetary

benefits of installation, where again we calculate the monetary benefits of installation as

µij (Nω
i ) evaluated at Nω

i = 15, the average number of panels in a solar system in the data.

Across all specifications, we find that a 1000 increase in monetary benefits is associated with

a 0.07 to 0.11 increase in average panels per installation.

C.4 Border Discontinuities in Household Characteristics

Here, we look for evidence of sorting based on preferences for solar panels on either side of

state borders. For each graph, we regress the variable in question on state-border fixed e!ects

and dummy variables for these locations bins and plot these estimated location fixed e!ects.

Figures A7a, A7b, and A7c plot these fixed e!ects for percent with college degree, percent of

voters who voted Democrat in the 2016 presidential election, and average household income,
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(1) (2) (3) (4) (5) (6)
Monetary Benefits 0.0737*** 0.0856*** 0.0787*** 0.0878*** 0.115*** 0.117***

(0.0222) (0.0217) (0.0228) (0.0221) (0.0316) (0.0321)

Observations 41,776 41,776 41,776 41,776 41,776 41,776
R-squared 0.013 0.018 0.027 0.030 0.042 0.043
Demographic Controls NO YES NO YES NO YES
Region FE NO NO YES YES NO NO
Division FE NO NO NO NO YES YES

*** p<0.01, ** p<0.05, * p<0.1

Table A5: Regression of average panel size on the total monetary benefits associated with solar panel instal-
lations. Monetary benefits measured in thousands of 2014 dollars. Standard errors clustered by state.

(a) Percent College Degree (b) Percent Democrat (c) Average Household Income

Figure A7: Border Discontinuities in Household Characteristics. For each graph, we regress the variable in
question on state-border fixed e!ects and dummy variables for these locations bins and plot these estimated
location fixed e!ects.

respectively. There is no clear pattern in these characteristics on either side of the border.

C.5 Border Regressions with Controls for Non-Subsidy Incentives

In order to measure the prevalence of non-subsidy programs aimed at increasing solar adop-

tion, we collect data from DSIRE on the number of state-implemented policies for solar

photovoltaics in the residential sector for each state. We categorized non-subsidy programs

into three categories: 1) “Financing Programs,” policies providing loans and financing op-

tions to pay for solar installations, 2) “Access Rules,” policies that protect households’ ability

to install solar panels, and 3) “Building Incentives,” programs which create incentives for new

building projects to include rooftop solar.61 We calculated the number of distinct policies

in each of these three categories and added these policy counts as controls in our border

discontinuity regressions.

61“Financing Programs” are programs classified as “Loan Program” and “PACE Financing” in DSIRE,
“Access Rules” are programs classified as “Solar/Wind Access Policy” and “Solar/Wind Permitting Stan-
dards” which target solar photovoltaics, and “Building Incentives” are programs classified as “Building Energy
Codes” and “Green Building Incentives”.
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Dependent Variable:
Log Installations per Capita

(1) (2) (3) (4)
NPV Subsidies ( 1000s) 0.0826*** 0.105*** 0.0854*** 0.0810***

(0.00761) (0.00882) (0.0142) (0.0132)
Financing Programs 0.328*** 0.302*** 0.307***

(0.0641) (0.0605) (0.0611)
Access Rules 0.289* 0.271

(0.163) (0.166)
Building Incentives 0.208*

(0.110)
(0.104)

Demographic Controls YES YES YES YES
Border FE YES YES YES YES
Distance Bandwidth 10 10 10 10
Tax Controls Yes Yes Yes Yes
Observations 6,052 6,052 6,052 6,052

*** p<0.01, ** p<0.05, * p<0.1

Table A6: Regression of log installations per capita on the net present value of subsidies for a 15-panel
installation within 10 miles of state borders with controls for non-subsidy programs. Subsidies are measured
in thousands of 2014 dollars. State-clustered standard errors in parentheses. All regressions contain border
fixed e!ects, tract-level demographic controls, and controls for state tax rates. Non-subsidy policy variables
are measured as the number of policies of a given type in the state.

Table A6 shows the results. The first column shows the border discontinuity regression

without these additional policy controls, column (2) adds a control variable for the number of

Financing Programs in the states, column (3) adds the number of Access Rules in the state,

column (4) add the number of Building Incentives. In all regressions, our main coe”cient

estimating the elasticity of installations with respect to subsidies is very similar to the baseline

results, and all of the non-subsidy programs have the expected positive sign.

In Table A7, we repeat this analysis but replace the count of policies in each program

type with a dummy equal to one if the state has any programs of that type. The results are

very similar to those in A6.

C.6 Power Plant Model

Here we present additional information about the power plant model estimation results.

Figures A8 and A9 show the model fit graphs for the main paper, broken out into regions

and evaluated on out-of-sample data from 2020. These show that model performance is

consistent within each interconnection.
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Dependent Variable:
Log Installations per Capita

(1) (2) (3) (4)
NPV Subsidies ( 1000s) 0.0826*** 0.107*** 0.103*** 0.0933***

(0.00761) (0.00984) (0.0131) (0.0137)
Has Financing Programs 0.587*** 0.563*** 0.575***

(0.148) (0.125) (0.129)
Has Access Rules 0.0968 0.0827

(0.212) (0.216)
Has Building Incentives 0.308*

(0.171)

Demographic Controls YES YES YES YES
Border FE YES YES YES YES
Distance Bandwidth 10 10 10 10
Tax Controls Yes Yes Yes Yes
Observations 6,052 6,052 6,052 6,052

*** p<0.01, ** p<0.05, * p<0.1

Table A7: Regression of log installations per capita on the net present value of subsidies for a 15-panel
installation within 10 miles of state borders with controls for non-subsidy programs. Subsidies are measured
in thousands of 2014 dollars. State-clustered standard errors in parentheses. All regressions contain border
fixed e!ects, tract-level demographic controls, and controls for state tax rates. Non-subsidy policy variables
are dummy variables equal to one if the state has at least one policy of a given type.
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Figure A8: Model fit at the region level in 2020, excluding Texas as there is only one region in the Texas
interconnection. Dots represent an hour of production for each region, smoothed lines show the fit of a
generalized additive model.

(1) (2) (3)
State-Specific Subsidies

Baseline Welfare Max Damage Min
Unit Subsidies 7.1 0.8 1.0
Cost Subsidies 80.9 1.5 0.8
kWh Subsidies 8.4 97.7 98.2
Total 100.0 100.0 100.0

Table A8: Percent of total subsidy value from each type of subsidy for a 15-panel installation averaged across
all households in the model. Each column shows the subsidy values for a di!erent simulation.

A10 shows how fuel mix varies for each region, using in-sample 2019 data.

C.7 Type of Subsidy in Nationally-Optimal System

We now analyze how the government should optimally allocate subsidies across the three

subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh)

subsidies. To facilitate comparison, we calculate the present discounted value an “average

installation” would receive. Specifically, we calculate the subsidy value every household in

the model would receive if they purchased a 15-panel installation.62 We then average this

hypothetical subsidy value over all households. Table A8 shows the percent of the total

subsidy value coming from each subsidy type in each simulation. Under the current system,

62We define households as rooftops suitable for solar panel installations as defined by GPS data.
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Figure A9: Model fit at the region level by hour and season in 2020. The dashed green line gives electricity
production in the data while the solid orange line gives predicted production.
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Figure A10: Fuel mix of production by region. The X-axis gives excess load at the interconnection level and
the Y-axis gives the percent of electricity production that is produced by each of the fuel types using data
from 2020. The dashed lines show the fuel mix in the data while the solid lines show the simulated fuel mix.

over 80% of the value of subsidies comes from cost-based subsidies, which include the fed-

eral investment tax credit, state investment tax credits, sales tax exemptions, and property

tax exemptions. On the other hand, the welfare-maximizing subsidies almost exclusively

consist of production-based subsidies. Intuitively, production-based subsidies incentivize in-

stallations for households where sunlight, and therefore environmental benefits, are high.63

However, as we show in Section 6.5, the gains to reallocating across subsidy types within

states are small relative to the gains from reallocating subsidies across states.

C.8 Average Panel Size Across Counterfactuals

Table A9 shows the average number of panels per installation across Census regions in each

simulation. We can see that panel size does not significantly change across regions or across

simulations. These results suggest that extensive-margin adjustments shown in the body

of the paper play a much more important role quantitatively than the intensive-margin

adjustments shown here.

63One important caveat is that we assume households’ discount rate is given by the inverse of the real
interest rate.
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(1) (2) (3) (4) (5)
State-Specific Subsidies Tract-Specific Subsidies

Baseline Welfare Max Damage Min Welfare Max Damage Min
I. Average Number of Panels per installation
Midwest 14.7 14.9 15.0 14.9 15.0
Northeast 15.1 14.9 15.0 14.9 15.0
South 14.8 15.1 15.1 15.1 15.1
West 15.0 15.2 15.1 15.2 15.1

Table A9: Each entry gives the average number of solar panels in a solar installation across Census regions
in each model simulation.

C.9 State-Level Results

The first columns of Table A10 gives the baseline and welfare-maximizing subsidy in each

state. The following columns show the simulated number of solar panel installations per 1000

households under the current subsidies and under the welfare-maximizing subsidies.

The first two columns of Table A11 shows the state-level subsidies given the current

system and the damage-minimizing subsidies. The following columns of Table A11 show the

simulated number of solar panel installations per 1000 households given the current subsidies

and under the damage-minimizing subsidies.

C.10 Unconstrained Nationally-Optimal Subsidies with ς = 1

Theory We define welfare as

W =



i

Vidi
︸ ︷︷ ︸
Utility

↑D (ELoad)︸ ︷︷ ︸
Damages

↑


j



i→Ij
sijm

ω
i di

︸ ︷︷ ︸
Government Cost

. (26)

The nationally-optimal system of subsidies must satisfy εW
εsεj

= 0 for each type of subsidy

in each state, which implies

ϖMj

ϖsϑj
≃
(↑↑↘
#Dϑ,ext

j ↑↑↘s ϑ,ext
j

)

︸ ︷︷ ︸
Extensive Margin

+
ϖNj

ϖsϑj


Mst

j

≃

↑↑↘
#Dϑ,int

j ↑
↑↑↘
ϖs

ϖN
ϑ,int
j



︸ ︷︷ ︸
Intensive Margin

= 0, (27)

where all objects are as defined in Section 2.3.

The optimal policy balances two forces: 1) the decrease in damages and 2) the increase

in cost due to an increase in the number of panel installed, through both extensive and

intensive margin adjustments. Importantly, note that household utility does not show up in

this formula. This is because there is no first-order welfare e!ect on households for marginal
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Table A10: The first two columns shows the state-level subsidies given the current system and the welfare-
maximizing subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of 2014 dollars. The following columns show the simulated
number of solar panel installations per 1000 households given the current subsidies and under the welfare-
maximizing subsidies.
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Table A11: The first two columns shows the state-level subsidies given the current system and the damage-
minimizing subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of 2014 dollars. The following columns show the simulated
number of solar panel installations per 1000 households given the current subsidies and under the damage-
minimizing subsidies.
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households (i.e. households who choose to install solar panels in response to the increase in

subsidies) because of the envelope theorem. Further, the utility increase for non-additional

households (i.e. households who already chose to install solar panels before the increase in

subsidies) associated with receiving a larger subsidy for existing panels is exactly o!set by

the cost of increasing subsidies for these households.64

Results Table A12 presents the baseline and nationally-optimal subsidy in each state.

Nationally-optimal subsidies are lowest in Vermont, at 6,600. Nationally-optimal subsidies

are over twice as high in most of the Mid-Atlantic, with the highest subsidies at over 14,400

in Delaware and Maryland.

D Extensions and Robustness Appendix: For Online

Publication

D.1 Alternative Specifications of Household Utility

Table A13 recalculates our main results under alternative specifications of household utility.

Each entry shows the change in average subsidies, installations, and environmental benefits

associated with moving from the current system of subsidies to the welfare-maximizing system

of subsidies, given the specification in question. Column (1) considers a specification in which

the nonpecuniary component does not depend on tract-level demographics. In (2), we add

the tract-level fraction of individuals with a college education and in (3) we also add the

percent of voters who voted Democrat in the 2016 presidential election. To these variables,

(4) adds home-ownership rate rate and (5) instead adds average income. Note that Column

(3) is the same as our baseline specification. The results are qualitatively very similar across

specifications.

D.2 Alternative Discounting of Future Subsidy Payments

The optimal subsidy results where households discount future subsidy payments at an implicit

interest rate of 15% are summarized in Table A14. In all three specifications, the distribution

of subsidies and installations across space is similar to those in the baseline model.

64This is a direct consequence of 1) quasilinear utility and a utilitarian welfare function with equal Pareto
weights, which together imply that marginal social welfare weights (Saez and Stantcheva, 2016) are equalized
and there are no e!ects of total welfare of wealth redistribution, and 2) the assumption of that the marginal
cost of public funds is equal to one: the social planner values an increase in consumption for a given household
the same as an increase in government revenue.
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Expected Subsidy Expected Subsidy
Baseline Optimal Baseline Optimal

Alabama 5.8 11.7 Nebraska 7.6 10.6
Arizona 11.2 10.7 Nevada 6.6 10.6
Arkansas 5.8 10.7 New Hampshire 18.1 6.7
California 11.7 9.8 New Jersey 27.6 13.9
Colorado 9.4 9.5 New Mexico 10.6 11.1
Connecticut 15.7 6.8 New York 17.1 6.8
Delaware 10.0 14.4 North Carolina 8.9 11.7
Florida 10.3 12.4 North Dakota 10.0 9.6
Georgia 5.8 11.7 Ohio 6.6 13.5
Idaho 7.4 8.7 Oklahoma 5.8 11.3
Illinois 12.5 13.3 Oregon 11.1 7.1
Indiana 9.6 14.0 Pennsylvania 5.7 13.8
Iowa 16.9 10.0 Rhode Island 15.9 6.8
Kansas 11.7 10.9 South Carolina 9.3 11.9
Kentucky 6.3 11.0 South Dakota 11.3 9.7
Louisiana 15.2 10.9 Tennessee 7.6 11.3
Maine 5.3 6.8 Texas 16.0 9.1
Maryland 12.5 14.5 Utah 8.0 9.3
Massachusetts 24.7 6.8 Vermont 12.8 6.6
Michigan 6.2 9.4 Virginia 5.8 11.9
Minnesota 12.1 9.6 Washington 18.8 6.8
Mississippi 5.8 11.5 West Virginia 5.8 13.9
Missouri 9.4 10.5 Wisconsin 16.9 12.5
Montana 9.0 7.9 Wyoming 6.0 9.1

Table A12: The first two columns shows the state-level subsidies given the current system and the uncon-
strained nationally-optimal subsidies. Subsidies are measured as the average present discounted value of
subsidies for a 15-panel installation, measured in thousands of 2014 dollars. The following columns show the
simulated number of solar panel installations per 1000 households given the current subsidies and under the
welfare-maximizing subsidies.
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(1) (2) (3) (4) (5)
I. # Average Subsidy ( Thousands)

Midwest 2.6 2.6 2.7 2.7 2.7
Northeast -8.3 -8.6 -9.1 -9.1 -9.3
South 2.4 2.4 2.4 2.5 2.4
West 1.0 1.1 1.2 1.2 1.4

II. # Installations per 1000HHs
Midwest 5.1 5.2 5.4 5.4 5.5
Northeast -4.3 -4.2 -4.0 -4.1 -3.9
South 3.7 3.8 3.9 3.9 4.1
West 0.7 0.8 0.9 0.9 1.0

III. # Annual Damages O!set ( Millions)
Total 29.4 30.0 30.3 30.3 30.1

Nonpecuniary Component Depends On:
College Share No Yes Yes Yes Yes
Percent Democrat No No Yes Yes Yes
Homeowner Share No No No Yes No
Average Income No No No No Yes

Table A13: Counterfactual results under alternative model specifications. Each entry shows the change of
moving from the current system of subsidies to the nationally-optimal cost-neutral system of subsidies given
the specification in question. The first panel shows the change in the average present discounted value of
subsidies for a 15-panel installation for each census region. The second panel gives the change in the simulated
number of solar installations per 1000 households in the model for each Census region. The final panel gives
the change in total damages o!set by rooftop solar. All monetary values are measured in 2014 dollars. See
text for details on each model specification. “Percent Democrat” refers to the percent of voters who voted
Democrat in the 2016 presidential election.
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(1) (2) (3) (4)
State-Specific Subsidies

Baseline Welfare Max Damage Min Unconstrained
I. Average Subsidy ( Thousands)

Midwest 10.0 15.4 15.7 11.7
Northeast 17.1 13.1 11.7 9.9
South 10.6 14.6 14.5 11.2
West 11.7 12.6 10.7 9.6

II. Installations per 1000HHs
Midwest 5.3 8.2 8.8 5.9
Northeast 20.7 11.4 11.3 8.6
South 6.5 9.1 9.3 6.7
West 11.9 13.2 11.5 10.1
National 9.9 10.4 10.1 7.8

III. Annual Damages O!set ( Millions)
Total 263.6 293.6 296.5 217.0

IV. Annuitized Total Subsidies Paid ( Millions)
383.3 383.3 383.3 217.0

Table A14: Nationally-optimal subsidies with alternative household discounting. The first panel shows the
average present discounted value of subsidies received for a 15-panel installation for each census region. The
second panel gives the simulated number of solar installations per 1000 households in the model for each
Census region. The third panel gives the total damages o!set by rooftop solar. The final panel gives total
government cost under each subsidy scheme converted to an annuity value. “Unconstrained” refers to the
optimal unconstrained subsidies with the marginal value of public funds equal to one (ϖ = 1). All monetary
values are measured in 2014 dollars.

(1) (2) (3)
Current State-Specific Optimal Subsidies
Subsidies Welfare Max Damage Min Unconstrained

Unit Subsidies 7.1 16.9 16.4 10.4
Cost Subsidies 80.9 83.1 83.6 89.6
kWh Subsidies 8.4 0.0 0.0 0.0
Total 100.0 100.0 100.0 100.0

Table A15: Percent of total subsidy value from each type of subsidy for a 15-panel installation averaged
across all households in the model with alternative household discounting. Each column shows the subsidy
values for a di!erent simulation. “Unconstrained” refers to the optimal unconstrained subsidies with the
marginal value of public funds equal to one (ϖ = 1).
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Table A15 shows how the government should optimally allocate subsidies across the three

subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh)

subsidies. For this, we calculate the subsidy value every household in the model would receive

if they purchased a 15-panel installation and then average this hypothetical subsidy value

over all households. We then calculate the percent of the total subsidy value coming from

each subsidy type in each simulation. In all of the optimal subsidy systems, the government

relies entirely on upfront subsidies. This makes sense, as production subsidies are not as

highly valued, per dollar, as these other two subsidies types.

Table A16 shows the damages o!set per additional dollar of government cost associated

with marginal subsidy increases around the current system of subsidies. As before, we calcu-

late this by first simulating the model 1) under the current system of subsidies and 2) with

marginally more generous subsidies of a given type in a given state. We then calculate the

damages o!set per dollar of this particular subsidy as the di!erence in damages between the

two simulations divided by the di!erence in the fiscal cost. We repeat this process for each

subsidy type in each state.

We can see that production subsidies are much less cost-e!ective than investment and

per-panel subsidies. This makes sense, as households in this model heavily discount subsidies

received in the future.

D.3 Line Losses

We use the methodology from Borenstein and Bushnell (2022) to account for line losses be-

tween the power plant and households. Formally, losses for each region come from a constant

plus a factor proportional to the square of flow on the line: LRt = ▷1R+▷2R

(
LoadRt ↑ ESolar

Rt

)2
.

Note that the parameters ▷1R and ▷2R are both allowed to vary by region to reflect di!er-

ences in grid characteristics across regions. We then adjust excess load by those losses,

ELoadLL
Rt = LoadRt ↑ ENonD

Rt ↑ ESolar

Rt + LRt. Losses enter positively since power plants must

produce not only the amount of electricity demanded by households but also must make up

for the losses incurred in transporting electricity to the household. Adding line losses changes

the marginal damages o!set by residential solar to


ϖD (ELoad)

ϖNi

 =
T

t=0

1

(1 + r)t
Ait

(
1 + 2▷2R

(
LoadRt + ESolar

Rt

)) 
ϖDt (·)

ϖELoadRt

 .

The installation of solar panels now has two benefits. As we have in our primary model, so-

lar panels reduce the electricity demand fulfilled by power plants, generating benefits equal to

the electricity produced by a panel, Ait, times the change in damages,
 εDt(·)
εELoadRt

. Now, there is
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Subsidy Type Subsidy Type
Panel Cost kWh Panel Cost kWh

Alabama 0.68 0.68 0.32 Nebraska 0.56 0.55 0.28
Arizona 0.41 0.41 0.24 Nevada 0.60 0.59 0.29
Arkansas 0.62 0.62 0.30 New Hampshire 0.23 0.23 0.14
California 0.43 0.43 0.24 New Jersey 0.36 0.36 0.24
Colorado 0.46 0.46 0.24 New Mexico 0.51 0.50 0.27
Connecticut 0.25 0.25 0.15 New York 0.24 0.24 0.14
Delaware 0.68 0.67 0.36 North Carolina 0.58 0.57 0.30
Florida 0.58 0.58 0.31 North Dakota 0.45 0.45 0.24
Georgia 0.69 0.68 0.32 Ohio 0.75 0.75 0.36
Idaho 0.47 0.47 0.23 Oklahoma 0.67 0.66 0.32
Illinois 0.56 0.56 0.31 Oregon 0.27 0.27 0.16
Indiana 0.67 0.66 0.35 Pennsylvania 0.80 0.79 0.38
Iowa 0.36 0.35 0.21 Rhode Island 0.25 0.25 0.15
Kansas 0.47 0.47 0.26 South Carolina 0.55 0.54 0.29
Kentucky 0.39 0.39 0.24 South Dakota 0.43 0.43 0.23
Louisiana 0.42 0.41 0.24 Tennessee 0.60 0.59 0.30
Maine 0.40 0.40 0.19 Texas 0.34 0.33 0.20
Maryland 0.61 0.60 0.34 Utah 0.42 0.41 0.23
Massachusetts 0.18 0.18 0.12 Vermont 0.27 0.27 0.15
Michigan 0.53 0.53 0.25 Virginia 0.69 0.68 0.33
Minnesota 0.41 0.41 0.23 Washington 0.22 0.22 0.14
Mississippi 0.67 0.66 0.32 West Virginia 0.81 0.80 0.38
Missouri 0.50 0.50 0.26 Wisconsin 0.44 0.44 0.26
Montana 0.39 0.38 0.20 Wyoming 0.52 0.52 0.25

Table A16: Damages o!set per additional dollar of government funds associated with marginal subsidy
increases around the current system of subsidies with alternative household discounting. The first column
(“Panel”) gives the damages o!set per dollar associated with marginal increases in panel-based subsidies,
sPanelj , the second column (“Cost”) gives the damages o!set per dollar associated with marginal increases

in cost-based subsidies, sCost
j , and the third column (“kWh”) gives the damages o!set per dollar associated

with marginal increases in production-based subsidies, skWh
j .
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an additional benefit from o!setting line losses, captured by the term 2▷2R

(
LoadRt ↑ ESolar

Rt

)
,

which is the marginal change in losses. Including line losses increase the average damages

o!set by marginal installers,
↑↑↘
#Dϑ,ext

j , and by intensive margin installers,
↑↑↘
#Dϑ,int

j , when cal-

culating nationally-optimal subsidies.65

Borenstein and Bushnell (2022) estimate line losses as a proportion of total production

for over 1,600 utilities in the United States. We take the weighted average of these estimates

to create values for each region, weighting by the total electricity production of each utility.

Let εR be line losses as a proportion of total production in region R. We then follow their

assumption that 25% of line losses are independent of flow on the line, which allows us to

back out ▷1 = 0.25εR
∑

t

(
LoadRt ↑ ESolar

Rt

)
and ▷2 = 0.75εR

∑
t(LoadRt↓ESolar

Rt )
∑

t(LoadRt↓ESolar
Rt )

2 .

Results The results are summarized in Table A17. The first column gives cost-neutral

subsidies, installations, and damages o!set given the current system of subsidies when we

account for line losses. The annual damages o!set are slightly larger than the baseline model

in which we do not account for line losses.

The following summarize the results under (2) state-specific welfare-maximizing subsidies,

(3) state-specific damage-minimizing subsidies, (4) state-specific unconstrained nationally-

optimal subsidies. In all three counterfactuals, the subsidies and installations are similar to

those in the baseline model when we do not account for line losses. However, the environ-

mental gains are larger than in the baseline model.

D.4 Transmission Constraints

The results in the model with transmission constraints are summarized in Table A17. The

first column gives cost-neutral subsidies, installations, and damages o!set given the current

system of subsidies when we account for transmission constraints. The annual damages o!set

are slightly larger than the baseline model in which we do not account for line losses.

The following columns summarize the results under (2) state-specific welfare-maximizing

subsidies, (3) state-specific damage-minimizing subsidies, (4) state-specific unconstrained

nationally-optimal subsidies. We find that current spending on subsidies exceeds the optimal

amount by roughly 45% in this case.

65One caveat is that we do not adjust electricity production from solar panels to account for line losses
when residential solar panels transmit electricity back into the grid.
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(1) (2) (3) (4)
State-Specific Subsidies

Baseline Welfare Max Damage Min Unconstrained
I. Average Subsidy ( Thousands)

Midwest 10.0 15.4 16.1 13.1
Northeast 17.1 13.1 11.6 10.9
South 10.6 14.5 14.2 12.2
West 11.7 12.5 10.8 10.4

II. Installations per 1000HHs
Midwest 5.4 8.2 9.0 6.7
Northeast 20.3 11.3 11.2 9.4
South 6.6 8.9 9.1 7.4
West 11.9 13.1 11.6 11.0
National 9.9 10.3 10.1 8.5

III. Annual Damages O!set ( Millions)
Total 288.5 321.6 324.0 264.2

IV. Annuitized Total Subsidies Paid ( Millions)
380.8 380.8 380.8 263.9

Table A17: Nationally-optimal subsidies when accounting for line losses. The first panel shows the average
present discounted value of subsidies received for a 15-panel installation for each census region. The second
panel gives the simulated number of solar installations per 1000 households in the model for each Census
region. Households are defined as rooftops which are suitable for solar panel installations as defined by
GPS data. The third panel gives the total damages o!set by rooftop solar. The final panel gives total
government cost under each subsidy scheme converted to an annuity value. “Unconstrained” refers to the
optimal unconstrained subsidies with the marginal value of public funds equal to one (ϖ = 1). All monetary
values are measured in 2014 dollars.
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(1) (2) (3) (4)
State-Specific Subsidies

Baseline Welfare Max Damage Min Unconstrained
I. Average Subsidy ( Thousands)

Midwest 10.0 14.4 14.4 12.0
Northeast 17.1 15.5 16.6 13.1
South 10.6 12.8 11.4 10.6
West 11.7 13.6 13.1 11.4

II. Installations per 1000HHs
Midwest 5.4 7.4 7.5 6.1
Northeast 20.3 13.7 15.1 11.1
South 6.6 7.6 6.9 6.3
West 11.9 14.4 14.2 11.8
National 9.9 10.4 10.3 8.5

III. Annual Damages O!set ( Millions)
Total 299.1 311.7 313.5 256.3

IV. Annuitized Total Subsidies Paid ( Millions)
380.8 380.8 380.8 259.7

Table A18: Nationally-optimal subsidies when accounting for transmission constraints. The first panel shows
the average present discounted value of subsidies received for a 15-panel installation for each census region.
The second panel gives the simulated number of solar installations per 1000 households in the model for each
Census region. Households are defined as rooftops which are suitable for solar panel installations as defined
by GPS data. The third panel gives the total damages o!set by rooftop solar. The final panel gives total
government cost under each subsidy scheme converted to an annuity value. “Unconstrained” refers to the
optimal unconstrained subsidies with the marginal value of public funds equal to one (ϖ = 1). All monetary
values are measured in 2014 dollars.
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D.5 Improved Storage of Nondispatchable Electricity

Because of intermittent nature of many renewable energy sources, times when renewable

energy generation is high may not correspond with times when electricity demand is high.

Improvements in energy storage technology would allow electricity generated by nondis-

patchable energy sources to be stored for times when it is most needed. What would be the

environmental benefits of these improvements in energy storage technology? And how would

the introduction of improved electricity storage technology change the nationally-optimal

system of solar subsidies?

As a simple way to try to answer these questions, we consider a setting in which elec-

tricity produced by nondispatchable sources (including household solar) can be imperfectly

reallocated over time. Specifically, given the total amount of electricity produced by nondis-

patchable sources in a year, we assume a proportion 1 of this electricity is reallocated over

time such that the profile of usage of this reallocated electricity is proportional to electricity

demand.66 Formally, we write excess demand as

ELoadstorage

Rt =



1↑ 1
(
ANonD

R + ASolar

R

)
︸ ︷︷ ︸
Reallocated Electricity



LoadRt ↑ (1↑ 1)
(
ENonD

Rt + ESolar

Rt

)
︸ ︷︷ ︸

Non-Reallocated Electricity

where ANonD

R =
∑

t E
NonD
Rt∑

t LoadRt
and ASolar

R =
∑

t E
Solar
Rt∑

t LoadRt
are region-specific constants which ensure

that total amount of nondispatchable energy utilized is equal to total nondispatchable energy

generated.67

Results We calculate the environmental benefits of this improved storage technology and

the nationally-optimal subsidies given the new storage technology for three values of 1 in

Table A19. Column (2), for example, shows the e!ects of this alternative storage technology

with 1 = .25, holding the system of solar subsidies at their current levels. As subsidies do not

change, the distribution of installations is the same as in the case without storage technology.

Panel III shows that the improved storage technology leads to a decrease in environmental

damages valued at over 125 million annually. Column (3) recalculates the nationally-optimal

cost-neutral subsidies given that the new storage technology is in place. We find that the

nationally-optimal subsidies are very similar to the baseline case and that implementing the

66This is highly stylized model of electricity storage. More generally, optimal storage and withdrawal of
electricity will depend on the distribution of the cost of electricity production by other sources over time
and space. See Holland, Mansur, and Yates (2022) for a richer model of electricity storage. It would be
straightforward to only be reallocated within the same day it is generated.

67Similar to Holland, Mansur, and Yates (2022), we assume that there are no electricity losses associated
with electricity storage, e.g. from charging batteries or decay of electricity over time.
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nationally-optimal subsidies leads to similar reductions in environmental damages as we find

without the improved storage technology. Column (4) shows the unconstrained nationally-

optimal subsidies given the new storage technology. The nationally-optimal unconstrained

subsidies are very similar to the baseline case.

The remaining columns repeat this exercise for 1 = .5 and 1 = .75. In both scenarios,

we find large environmental benefits to the new technology. However, the nationally-optimal

subsidies and the environmental benefits associated with implementing those subsidies are

similar to those in the baseline case.

D.6 Cleaner Electricity Production

We present our results when we allow changes in electricity production in Table A20. The

first column gives the results under the current technology, as in our baseline results. The first

panel gives the change in average subsidy, measured in thousands of dollars when moving from

the current subsidies to the cost-neutral welfare-maximizing subsidies. The second panel gives

the change in installations per 1000 households. The final panel gives the percentage change

in environmental benefits when moving from the current to welfare-maximizing subsidies. As

before, we can see that moving to the welfare-maximizing cost-neutral subsidies given the

baseline technology leads to an increase in environmental benefits of 6.2%.

The next three columns show the results when we recalculate welfare-maximizing subsi-

dies given that the scale of utility-scale solar and wind expand based on three scenarios of

projected renewable expansion by 2030 from the EIA (Nalley and LaRose, 2022). Specifically,

we expand wind and solar based on their “reference case” projection, low-cost projection, and

high cost-projection. The high-cost scenario is associated with the smallest increase in utility-

scale solar and wind production, while the low-cost scenario is associated with the largest

increases.68 We refer to their reference case projection as the mid-cost projection. Across the

three scenarios, we find that moving to the welfare-maximizing cost-neutral subsidies leads

to a 17-20% increase in aggregate environmental benefits.

In the fifth column, we recalculate results considering each coal plant to have “cleaned up”

by adjusting marginal damages from coal plants so that the distribution of marginal damages

from coal plants matches that of natural gas plants. Moving to the welfare-maximizing cost-

neutral subsidies leads to a 11.6% increase in aggregate environmental benefits in this case.

Columns 6 through 10 repeat this exercise with unconstrained nationally-optimal sub-

sidies. In all cases, current subsidies are overfunded relative to the optimum. Moving to

unconstrained nationally-optimal subsidies involves cutting funding for subsidies by 55% to

68Specifically, utility-scale solar increases by roughly 200%, 350%, and 500% in the three scenarios, while
wind increases by 45%, 50%, and 55%.
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Table A19: Nationally-optimal cost-neutral and unconstrained subsidies with improved storage technology.
The first panel shows the average present discounted value of subsidies received for a 15-panel installation for
each census region. The second panel gives the simulated number of solar installations per 1000 households
in the model for each Census region. The third panel gives the total damages o!set by rooftop solar and by
the increased storage technology of renewable energy. The final panel gives total government cost under each
subsidy scheme converted to an annuity value. “Unconstrained Optimal” refers to the optimal unconstrained
subsidies with the marginal value of public funds equal to one (ϖ = 1). All monetary values are measured in
2014 dollars.
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Table A20: Nationally-optimal cost-neutral and unconstrained subsidies under alternative assumptions about
central generation energy production. Each entry of Columns (1) through (4) shows the change of moving
from the current system of subsidies to the welfare-maximizing cost-neutral system of subsidies given the
specification in question. Each entry of Columns (5) through (8) shows the change of moving from the current
system of subsidies to the unconstrained nationally-optimal system of subsidies given the specification in
question. “Unconstrained” refers to the optimal unconstrained subsidies with the marginal value of public
funds equal to one (ϖ = 1). All monetary values are measured in 2014 dollars. See text for details on each
model specification. 37



65% across specifications.

38


	Introduction
	Model
	Households
	Electricity Production
	Background
	Model: Electricity Production
	Damages

	Government's Problem and Nationally-Optimal Subsidies

	Quantitative Model
	Household preferences
	Dispatchable Power Plant Production
	Damages

	Data and Estimation
	Data Sources
	Descriptive Patterns
	Estimation

	Estimation Results and Model Fit
	Households
	Parameter Estimates
	Model Fit (Installations)
	Comparison to Existing Estimates

	Power Plants

	Counterfactuals and Nationally-Optimal Subsidies
	Welfare-Maximizing Subsidies
	Damage-Minimizing Reforms
	Tract-level Subsidies
	Unconstrained Reforms
	Marginal Subsidy Increases

	Extensions, Robustness and Further Issues
	Alternative Specifications of Household Utility
	Alternative Discounting of Future Subsidy Payments
	Line Losses
	Transmission Constraints
	Improved Storage of Nondispatchable Technology
	Cleaner Electricity Production
	Distributional Effects
	Installation Elasticities with Historical Subsidy Measures

	Conclusion
	Data Appendix: For Online Publication
	Deep Solar
	Google Project Sunroof
	Tracking the Sun
	System Advisor Model
	State Electricity Prices
	Subsidies
	Power Plants

	Theory and Quantitative Appendix: For Online Publication
	States Without Net Metering
	Maximum Likelihood Estimation of Power Plant Policy Functions
	Details: Cost-Neutral Reforms
	Numerical Algorithm for Calculating Optimal Subsidies
	Details: Damage-Minimizing Subsidies

	Results Appendix: For Online Publication
	Installation Prices
	Relationship Between Installations and Monetary Incentives
	Installation Size Regressions
	Border Discontinuities in Household Characteristics
	Border Regressions with Controls for Non-Subsidy Incentives
	Power Plant Model
	Type of Subsidy in Nationally-Optimal System
	Average Panel Size Across Counterfactuals
	State-Level Results
	Unconstrained Nationally-Optimal Subsidies with =1

	Extensions and Robustness Appendix: For Online Publication
	Alternative Specifications of Household Utility
	Alternative Discounting of Future Subsidy Payments
	Line Losses
	Transmission Constraints
	Improved Storage of Nondispatchable Electricity
	Cleaner Electricity Production


