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Abstract

We study the optimal design of income-contingent subsidies for residential
solar panels. Using remotely sensed data on solar panel installations across the
contiguous US and a border-discontinuity design, we estimate that the respon-
siveness of installation rates to subsidies is strongly decreasing in income. Using
these empirical elasticities, we estimate a model that embeds a solar panel in-
stallation decision into a dynamic consumption/savings framework with borrow-
ing constraints. Counterfactual simulations reveal that switching to production-
maximizing income-contingent subsidies leads to a three-fold increase in public
funds received by low-income households and a 2.4% increase in national solar
production. Means-tested subsidies are justified on both equity and e!ciency
grounds.
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1 Introduction

Subsidies for residential solar panels disproportionately benefit high-income households

(Borenstein and Davis, 2024; Borenstein, 2017). Means-tested subsidies are an increas-

ingly popular way to to address this imbalance. As of 2024, seven states have subsidy

programs for residential solar which explicitly base eligibility or subsidy amounts on

household income.1 The scope and impact of these programs are set to expand signifi-

cantly with the 2023 launch of the Biden-Harris administration’s Solar for All program,

which pledged 7 billion dollars to fund low-income solar programs, and the 2022 intro-

duction of the Low-Income Communities Bonus Credit Program, which o!ers federal

tax credits for solar installations in low-income communities.2 However, despite the

increasing importance of income-contingent solar subsidies in US energy policy, to the

best of our knowledge, no quantitative analysis exists on how to set these subsidies

optimally.

This paper studies the equity and e”ciency trade-o!s associated with income-

contingent subsidies for residential solar. We derive su”cient statistics for the cost-

e!ectiveness of means-tested subsidies and estimate these su”cient statistics using

border-discontinuity regressions. We use these empirical estimates to identify param-

eters in our structural model and then use our structural model to solve for optimal

income-contingent subsidy schedules. We conclude that there are substantial equity and

e”ciency gains to instituting federal means-tested subsidies for rooftop solar panels.

To motivate our reduced-form analysis, consider a government that uses income-

contingent subsidies to maximize solar production subject to a fiscal cost constraint.

All else equal, the government will optimally provide subsidies to income groups with

many additional households, that is, households who will be induced to install solar

panels in response to a small subsidy increase. On the other hand, the fiscal costs

of providing subsidies are increasing in the number of non-additional households: the

households who already choose to install solar panels absent the subsidy increase.3 We

1https://www.solarreviews.com/blog/free-solar-panels-for-low-income-families. Sev-
eral additional states also have community solar programs that target low-income households.

2Proponents of the Solar for All program emphasized the program’s equity benefits. Senator Bernie
Sanders, the program’s sponsor, said, “At a time when people are struggling to make ends meet, all
while dealing with the existential threat of climate change, we must make residential rooftop solar a
reality for low-income and working families that need it most. This 7 billion residential solar program...
is a major step in the right direction.” The initial guidance for the Low-Income Communities Bonus
Credit Program underscores that the program aims to advance environmental justice.

3“Additional and ”non-additional” agents are sometimes refereed to as “marginal” and “infra-
marginal” agents, respectively. See, e.g., Colas, Findeisen, and Sachs (2021).
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show analytically that the ratio of the additional over non-additional households, as

measured by the partial elasticity of solar production with respect to subsidies, can

be used as a su”cient statistic for the cost-e!ectiveness of income-targeted subsidies.

Specifically, we show that if this partial elasticity is decreasing (increasing) in income,

then cost-neutral increases in the progressivity of the subsidy schedule will increase

(decrease) total solar production.

We then empirically investigate how this partial elasticity varies across income levels.

We use the Deepsolar database (Yu et al., 2018), which applies a novel machine-learning

framework to satellite imagery across the contiguous US to measure the total residential

solar panel area in each census tract, along with state-level subsidy data. Across a wide

range of specifications, including border-discontinuity regressions and specifications that

allow responsiveness to subsidies to vary nonparametrically in tract-level income, we

consistently find that low-income tracts have partial elasticities greater than those of

high-income tracts. Tracts with the median income level have a partial elasticity 15%

to 43% higher than tracts at the 90th percentile. These results are robust to a battery

of alternative specifications and suggest that means-tested subsidies could increase total

solar production without increasing fiscal costs.

We then turn to a quantitative model of residential solar demand to evaluate coun-

terfactual income-contingent subsidy schemes. Our framework embeds a homeowner’s

decision to install rooftop solar panels into a dynamic consumption/savings framework.

Installing solar panels involves an upfront monetary cost but delivers subsidies and a

stream of electricity production over the life of the panel. Households face borrow-

ing constraints and, therefore, may not be able to fully smooth consumption if they

choose to purchase solar panels. The model includes household heterogeneity in so-

lar irradiance, preferences, and prices faced by households across space, as well as a

rich quantification of the current federal and state subsidy schemes for solar panels,

which accounts for di!erences in time profiles across which subsidies are paid and the

nonrefundable nature of the Federal Investment Tax Credit.

We structurally estimate the model via indirect inference by using the remotely

sensed data on residential solar installations from Deepsolar, as well as data on solar

irradiance, electricity prices, subsidies, and income distributions across census tracts in

the US. To achieve identification, we target our partial elasticity estimates from our bor-

der discontinuity regressions, as well as additional moments on solar panel installations

across the income distribution and demographic groups. We show that our sparsely pa-

rameterized model matches both installation rates and elasticities of installations with
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respect to subsidies across the income distribution. The model is also consistent with

non-targeted quasi-experimental estimates of the responsiveness of solar installations

with respect to prices and subsidies.

Our estimated structural model provides a framework that allows us to quantify

the equity-e”ciency consequences associated with various subsidy schemes. We first

turn our attention to the current subsidy scheme for residential solar in the US. As

highlighted by Borenstein and Davis (2024), current subsidies for residential solar are

highly regressive, driven by the fact that installation rates increase strongly with house-

hold income. To understand the factors driving this regressivity, we use our model to

decompose the mechanisms that create the positive correlation between income and

installation rates. Our model-based decomposition reveals that borrowing constraints

and the non-refundability of the Federal Investment Tax Credit play the largest roles

in explaining di!erences in installation rates among low- and high-income homeowners,

while di!erences in preferences and the distributions of low- and high-income households

across space play smaller roles.

We then use the estimated model to analyze the e!ects of introducing small income-

contingent subsidies to the current subsidy scheme. Consistent with our reduced-form

results, we find that introducing income-targeted subsidies for low-income households

induces more electricity production per dollar of public funds than income-neutral sub-

sidies. We show that the larger number of non-additional households at high income

levels is the primary driver of di!erences in cost-e!ectiveness across income groups:

Households who would have installed panels absent these subsidies receive 50% of sub-

sidies targeted at the 75th income percentile, as compared to only 30% of subsidies

targeted at the 25th income percentile.

Next, we solve for the optimal income-contingent subsidies. We first consider a

planner who chooses subsidies to maximize solar production without increasing fiscal

costs. Despite the fact that this social objective places no weight on equity, we find that

the optimal subsidies are highly progressive. The increase in progressivity associated

with moving to these optimal subsidies and the resulting increase in installation rates for

low-income households lead to a much more equitable distribution of public funds: the

amount of solar subsidies received by households in the bottom income quartile triples,

while the amount received by households in the top quartile is reduced by nearly half.

This scheme also increases national solar production by 2.4% at no additional fiscal

cost.

We then consider a planner who maximizes utilitarian welfare subject to a net
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cost constraint. The optimal welfare-maximizing schedule is slightly more progressive

than the production-maximizing subsidies, as means-tested subsidies increase solar pro-

duction while channeling funds towards poorer households who have higher marginal

utilities of income. This progressive subsidy scheme increases national solar production

by 2.3%. Means-tested subsidies are justified on both equity and e”ciency grounds.

We then conduct a series of robustness and sensitivity checks of our structural

results. We examine how sensitive our findings are to 1) alternative assumptions on

households’ dynamic income process, 2) alternative levels of the borrowing limit, 3) a

government who maximizes environmental benefits rather than solar production, and

4) decreases in the cost of solar panels. Across all specifications, we reach the same

qualitative conclusions: optimal income-contingent subsidies are decreasing in income,

and switching to means-tested subsidies leads to substantial equity and e”ciency gains.

To the best of our knowledge, ours is the first paper to quantify the optimal

income-contingent subsidies for solar panels. This focus on income-contingent sub-

sidies di!erentiates our paper from other papers which use structural models to ana-

lyze the e!ectiveness of various types of income-neutral subsidies for solar panels (e.g.,

Burr (2014), De Groote and Verboven (2019), Snashall-Woodhams (2019), Langer and

Lemoine (2022), Feger, Pavanini, and Radulescu (2022), Colas and Reynier (2024)).4

Of these, our paper is closest to Feger, Pavanini, and Radulescu (2022) and Colas and

Reynier (2024). Feger, Pavanini, and Radulescu (2022) analyze the equity-e”ciency

trade-o!s associated with solar panel cost subsidies and energy tari!s by estimating

a rich, dynamic model of solar panel installation and electricity usage using detailed

Swiss data. They do not model savings. Instead, preference parameters that directly

depend on household wealth generate di!erences in installation behavior across income

groups. Colas and Reynier (2024) use data from the Deepsolar database to study how

subsidies for residential solar panels should optimally vary across space, with a focus

on spatial variation in the environmental benefits of solar energy. Households are not

di!erentiated by income, and savings are not modeled. In addition to our novel focus

on income-continent subsidies, we contribute to this literature methodologically by 1)

modeling households’ dynamic consumption/savings decisions in an environment with

borrowing constraints and 2) utilizing a utility function that exhibits nonzero income

4Snashall-Woodhams (2019) uses a dynamic model and data from California to solve for cost-
minimizing subsidies that vary by electricity consumption type, solar energy potential, and location.
Dorsey and Wolfson (2023) analyze di”erences in solar installation purchases across income and race
groups and calculate di”erences in consumer surplus across demographic groups.
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e!ects. These features allow our model to replicate two patterns in the data that play

a pivotal role in determining the returns to targeted subsidy increases: 1) installation

rates across the income distribution and 2) elasticities of installations with respect to

subsidies across the income distribution.

More broadly, we are also related to a literature which quantifies the distributional

e!ects of energy policy (e.g., Bento et al. (2009), Borenstein (2012), Jacobsen (2013),

Borenstein and Davis (2016), Fried, Novan, and Peterman (2018), Reguant (2019),

Davis and Knittel (2019), Holland et al. (2019), Goulder et al. (2019), Morehouse

(2021), Hahn and Metcalfe (2021), Linn (2022), Cahana et al. (2022), Fried, Novan,

and Peterman (2022), and Dauwalter and Harris (2023)). We contribute to this liter-

ature by quantifying the dual equity-e”ciency benefits in the case of residential solar

subsidies. Finally, this paper is also related to several reduced-form papers estimating

the responsiveness of solar installations to subsidies in the United States, which we

discuss in Section 3.4. Relative to these papers, we focus on how the responsiveness of

installations varies as a function of household income.

2 Reduced-Form Analysis

2.1 Cost-E!ectiveness and Means-Tested Subsidies

We begin by deriving simple su”cient conditions for the cost-e!ectiveness of progressive

subsidies in a general model. Individual households are associated with an income level

y →
[
y, y

]
. The government has access to a system of income-contingent subsidies

for solar electricity production characterized by the function s, where s(y) denotes

the production subsidy available for households with income y.5 Let Ky (s(y)) be an

increasing function which maps subsidies for income level y to total solar production

from households of income level y. Further, let

Prod[s] =

∫
y

y

Ky (s(y)) dy

5For simplicity, we assume that the government only has access to these income-contingent pro-
duction subsidies. In the structural model, we will include a rich model of subsidies for solar panels,
including state and federal investment subsidies.
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denote the functional which maps the subsidy function s to total electricity production

and let

Cost[s] =

∫
y

y

Ky (s(y)) s(y)dy

denote the functional which maps s to fiscal cost.

Assume there are initially no income-contingent subsidies, as is the case federally,

such that s(y) = s̄ for all income levels y, where s̄ is a nonnegative constant. We

are interested in the implications of small changes to the subsidy function around this

income-neutral baseline. Formally, let ωs denote a variation to the function s such that

subsidies received by any income level y change to s̄ + ωs (y), where ωs (y) represents

an arbitrary infinitesimal change to subsidies.6 We will focus on variations that are

1) cost-neutral and 2) progressive. Cost-neutral variations are those that lead to no

change in fiscal cost, and progressive variations are those that are decreasing in income,

such that subsidies become more generous for low-income households and less generous

for high-income households.7

Proposition 1 provides a simple su”cient condition for when cost-neutral progressive

subsidy variations lead to increases in solar production.

Proposition 1. Define

ε(y) ↑
ωKy

ωs(y)

Ky

(1)

as the “cost-e!ectiveness” of a subsidy increase for a given income level y. If ε is

weakly decreasing (increasing) in income and ε
(
y
)
> ε (y)

(
ε
(
y
)
< ε (y)

)
, then any

cost-neutral progressive subsidy variation leads to a strict increase (decrease) in solar

production.

Proof. Appendix A.1

6Explicitly, we consider moving from the subsidy function s (y) = s̄ to the alternative subsidy
function s̃(y) = s̄+ ωg(y), where g(y) is a function in y and where we take the limit as ω ↓ 0.

7Formally, a cost-neutral variation is any variation εs such that

∫ y

y

εCost

εs (y)
εs (y) dy = 0,

where ωCost
ωs(y) is the functional derivative of Cost[s] with respect to εs (y). A progressive variation is

any variation εs such that
(y→→ ↔ y→) (εs(y→→)↔ εs(y→)) < 0

for y→→ ↗= y→.
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Proposition 1 shows that we can use measures of ε across the income distribution as

su”cient statistics for when moving to progressive subsidies can increase production:

if ε is decreasing in income, then cost-neutral progressive subsidies variations will lead

to production increases. If ε is decreasing in income, then these progressive subsidy

variations lead to production decreases.8

To see why this is the case, consider first the derivative ωKy

ωs(y)
in the numerator

of equation (1), which we refer to as the amount of “additional production.” This

value indicates how much solar production will increase in response to a small increase

in subsidies for a given income level. All else equal, it is more cost-e!ective for the

government to raise subsidies for income levels where additional production is high,

as subsidy increases for these households will lead to larger increases in total solar

production. The denominator measures the amount of “non-additional production,”

the amount of production by panels installed absent that subsidy increase. If subsidies

increase, households receive higher subsidies for this non-additional production, even if

they do not increase solar production. Consequently, more non-additional production

implies higher marginal costs for the government. Together, we can think of this ratio

of additional over non-additional production as measuring the “bang for your buck”

of a targeted subsidy increase since it measures the total change in solar production

per dollar paid to non-additional households. Our goal in the coming sections is to

empirically estimate how ε varies across the income distribution.

2.2 Data and Descriptive Results

We empirically estimate the cost-e!ectiveness of income-targeted subsidies using tract-

level variation in solar production and state-level variation in subsidies. For this, we

need a large sample of tract-level data on installations and income levels across the

USA and state-level data on solar panel subsidies.

8In Appendix A.2, we relate the distribution of cost-e”ectiveness across the income distribution to
production-maximizing subsidy schedule for a budget-constrained government. We show the optimal
subsidy schedule sε (·) must satisfy

sε (y) =
1

ϑ
↔ 1

ϖε(y)

for all income levels y, where ϑ is the Lagrange multiplier from the government’s budget constraint and
ϖε(y) is the cost-e”ectiveness associated with income level y given the production-maximizing subsidy
schedule. Therefore, the production-maximizing subsidy schedule will be decreasing in income if and
only if ϖε is decreasing in income.
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(a) Census tract income percentiles. (b) Census tract residential solar production percentiles.

(c) Solar production per capita by tract-level income. (d) State residential solar subsidies in /kWh.

Figure 1: Spatial variation in tract income, tract solar panel production, and state solar subsidies.
Income comes from the 2015 5-year ACS, solar production from Deepsolar, and subsidies from Sexton
et al. (2021). Panel (c) shows coe!cients from regressing annual solar production per captia on 11
income bins evenly spaced in log income. Standard errors are clustered by state.
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Solar panel installations We use the Deepsolar database (Yu et al., 2018) for tract-

level residential solar panel installations and total panel area across the 48 states in the

contiguous US. These data result from a deep-learning model trained to detect solar

panels from satellite imagery captured in 2016, providing the first comprehensive and

spatially fine measurement of solar panels.9 In addition to providing the deep-learning

model output, Deepsolar attaches several other variables for each census tract collected

from many sources. These include solar irradiance from NASA Surface Meteorology

and Solar Energy, state-average retail electricity prices from the EIA, and average in-

come and other demographic data from the 2015 5-year American Community Survey

(ACS).10 We calculate solar production in each census tract by multiplying total resi-

dential panel area in a tract by its average solar radiation.

Panels (a) and (b) of Figure 1 show the spatial distribution of tract-level average

income and total residential solar production. Solar production is concentrated in

sunny areas such as the Southwest, Florida, and California and high-subsidy states in

the Northeast. Meanwhile, income is highest along the East Coast, California coast, and

surrounding major cities. Panel (c) depicts the relationship between tract-level average

income and solar production per capita. Solar production is strongly increasing in

income: the lowest income tracts, those with average income less than 38 thousand

dollars, produce around 50 kWh of residential solar electricity per capita annually. The

highest income tracts, those with an average income over 117 thousand dollars, produce

around 400 kWh of residential solar electricity per capita annually, eight times higher

than the lowest income tracts.

Solar subsidies We use measures of state-level solar panel subsidy generosity calcu-

lated by Sexton et al. (2021) using 2017 data from the Database of State Incentives for

Renewables and E”ciency (DSIRE).11 They calculate these generosity measures as the

total subsidies per kWh of production that an average-sized installation in each state

is eligible for, accounting for federal and state investment tax credits, state production

credits, property and sales tax rebates, Solar Renewable Energy Certificates, and other

9Alternatives rely on self-reported data (e.g., Open Solar Project) or do not cover the entire US
(e.g., Tracking the Sun).

10Notably, we use population density, percent with a college degree, percent owner-occupied homes.
Percent voting Democrat in the 2016 election comes from townhall.com.

11While several states currently have income-contingent subsidy programs in place, the majority of
these programs were introduced after 2016, and therefore the solar installations we observe in our data
would not have been eligible for these subsidies.
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state-level subsidies.12 We will refer to these measures as the “generosity” of subsidies

in each state, which we use in the reduced-form estimation of how responsiveness to

subsidies varies across income groups. We disaggregate into several di!erent types of

subsidies in the formal quantitative model that follows.

Panel (d) of Figure 1 shows the spatial distribution of state subsidies. Generally

speaking, subsidies are most generous in the Northeast. Massachusetts has the highest

subsidies in the country, at 28 cents per kWh. Meanwhile, several states that do not

o!er any subsidies in addition to the federal incentives have subsidies under 4 cents per

kWh.

Border Discontinuities Our main empirical strategy is to use border-discontinuity

regressions to estimate how the responsiveness of solar production compares across

tracts with varying average income levels. To motivate this strategy, we present de-

scriptive evidence on how solar production levels in low- and high-income tracts change

as we cross the border from a state with less generous subsidies to a state with more

generous subsidies.

We define a tract’s location relative to the nearest border as the positive distance

to the border for tracts on the side of the border with more generous subsidies and

the negative distance to the border for tracts on the side with less generous subsidies.

We then categorize tracts into 10-mile-wide bins based on this location relative to the

border, and regress log solar production per capita on state-border fixed e!ects, fixed

e!ects for these location bins, and controls for population density.13 We run these

regressions separately for high- and low-income tracts, where tracts are categorized

as “high-income” if their average income is in the top quartile of tract-level income

and are labeled as “low-income” otherwise. We then plot the estimated location-bin

fixed e!ects, which show conditional average production levels for low- and high-income

tracts in narrow bandwidths around state borders.

Ideally, we would like to compare discontinuities in these average production levels

at state borders to learn about how the responsiveness of solar production to subsidies

varies across income groups. One issue is that, as we show in Appendix B.1, high-

income tracts are more likely to be located in the Northeast, where the di!erences in

12Unlike Sexton et al. (2021), we do not include net metering as a subsidy in our analysis as the
government does not pay for it.

13This follows the approach used by Bayer, Ferreira, and McMillan (2007) to visualize how house
prices respond to changes in school quality around school district borders.
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Figure 2: Border Discontinuities in Log Production per Capita. The graph plots estimated location-
bin fixed e”ects from a regression log production per capita in high-income tracts (hollow circles)
and low-income tracts (solid circles) on border fixed e”ects, location-bin fixed e”ects, and controls for
population density. Positive values on the X-axis represent households on the side of the border with
more generous subsidies, and negative values on the X-axis indicate the side of the border with less
generous subsidies. Observations are reweighted such that the total sum of weights around each state
border is equal to the total population of all tracts in that border region.

subsidies across states borders tend to be large, while lower income tracts are more

likely to be located in the South, where subsidy levels are relatively similar across

states. As a result, a regression run with only high-income tracts places greater weight

on state borders where subsidy di!erences are large, while a regression run with only

low-income tracts places greater weight on state borders where subsidy di!erences are

small. To make the weighting of state borders consistent across the two regressions, we

reweight observations such that a given state border receives the same weight in both

the regression with only low-income tracts and in the regression with only high-income

tracts.14

Figure 2 plots the estimated location-bin fixed e!ects for high-income and low-

income tracts. Positive values on the X-axis represent tracts on the side of the border

with more generous subsidies, and negative values on the X-axis represent tracts on

the side with less generous subsidies.15 We can see that log production rates for both

14We reweight observations in each of the two regressions such that the sum of weights around each
state border is equal to the total population of all tracts in that border region. Formally, let Popϑ
denote the population of a given tract ϱ, let Popϖ denote the total population in all tracts in the region
around a given border ς, and let PopIϖ denote the total population tracts of income group I around
a given border ς. In our regression for tracts of income level I, we weight tract ϱ in border region ς
by Popϖ

Popω

PopI
ε

. We show the graphs without reweighting in Appendix B.1.
15The regressions omit the location-bin fixed e”ect for the location bin nearest to the border on the
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groups increase sharply as we move to the side with more generous subsidies and that

the increase in production is larger for low-income tracts: production rates increase

by roughly 50% in low-income tracts compared to roughly 30% in high-income tracts.

These descriptive results suggest that production rates in low-income tracts may be

more responsive to increases in subsidies than production rates in high-income tracts.

2.3 Empirical Strategy

We can rewrite our measure of cost-e!ectiveness in equation (1) as a partial elasticity,

ε(y) ↑
ωKy

ωsy

Ky

=
ϑ logKy

ϑsy
. (2)

If these partial elasticities are decreasing in income, then means-tested subsidies can

increase solar production at no additional fiscal cost. Our reduced-form strategy is to

estimate how these empirical partial elasticities vary across income levels using tract-

level data on solar installations outlined above.

Concretely, we estimate various forms of the regression

logKε = ϖ(Yε)sε + x
→
ε
ω + ϱε, (3)

where Kε is total solar production in census tract ς, Yε is average income in tract ς, sε is

the generosity of subsidies available in tract ς, and xε is a vector of controls. The object

of interest, ϖ(Yε), gives the empirical partial elasticity of solar capacity with respect to

subsidies for tracts with average income Yε. In practice, we will use several methods to

parameterize how ϖ(·) varies as a function of income.

Before discussing the parameterization of ϖ(·), it is important to highlight that we

use tract-level, not household-level, data on solar production. We therefore estimate

the partial elasticity of tract-level solar production as a function of tract-level aver-

age income level, not the partial elasticity of production as a function of household

income.16 Census tracts are small geographic areas that are designed such that the

less generous subsidy side. Therefore, we can interpret these estimated location bin fixed e”ects as the
conditional average of log production rates in a given location bin relative to this omitted bin.

16In Appendix A.3, we show that the tract-level partial elasticity which we estimate is equal to the
production-weighted average of the household-level partial elasticity within the tract. Note that some
policies, such as the Low-Income Communities Bonus Credit Program, base eligibility on local average
income, rather than individual household income. In this case, the partial elasticity as a function of
local average income would be the relevant elasticity.
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population within each tract is relatively homogeneous in terms of demographic and

economic characteristics.17 In our structural analysis, we model a distribution of house-

hold income within each tract and account for the fact that tract-level elasticities di!er

from household-level elasticities.

Border Discontinuity Regressions Our first method to parameterize ϖ(·) is to

assume the partial elasticity of solar production is linear in log income and utilize a

border-discontinuity approach.18 Formally, let φ denote the nearest state border to a

given tract and let Locε denote the location of the tract relative to this border, again

defined as the positive distance to the border for tracts on the side of the border

with more generous subsidies and the negative distance to the border for tracts on the

side with less generous subsidies.19 Further, let the variable Ŷε denote “de-medianed”

income, calculated as tract-level income less the median income level. Limiting our

sample to tracts within 40 miles of state borders, we run regressions of the following

form:

logKε = ϖ
Dis

0
sε + ϖ

Dis

1
sε ↘ log Ŷε + x

→
ε
ωDis + gϑ (Locε) + ϱ

Dis

ε
. (4)

The term gϑ (Locε) is a border-specific smooth flexible function in a tract’s location

relative to the border, and controls for unobservables which may a!ect solar production

rates. In practice, we specify these functions as border-specific polynomials which

vary from degree 0 polynomials, in which case gϑ (·) is simply a border fixed-e!ect, to

polynomials of degree 5.

The parameters of interest are ϖ
Dis

0
, which gives the empirical partial elasticity of

solar production for tracts at the median income level, and ϖ
Dis

1
, which dictates how

this partial elasticity varies with tract-level income. A value of ϖDis

1
< 0 implies that the

partial elasticity of solar production with respect to subsidies is decreasing in income,

and therefore, means-tested subsidies can increase solar production without increasing

fiscal cost.
17https://www.census.gov/data/data-tools/survey-explorer/geo.html.
18Hughes and Podolefsky (2015) and Colas and Reynier (2024) also use border-discontinuity ap-

proaches to estimate the e”ects of subsidies on solar panel installations. Neither paper estimates how
the responsiveness of installations with respect to subsidies varies across income groups.

19Which of the two sides is normalized as the positive side does not a”ect any of the results as
we always use border-specific polynomials. In Appendix B.1 we visualize the discontinuities in sub-
sidy generosity and installation rates at state borders. In Appendix B.2 we show that household
demographics do not exhibit discontinuities at state borders.
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Nonlinear Specifications Given that the border-discontinuity approach is quite

demanding of the data, we cannot reliably estimate border-discontinuity models where

the partial elasticity of solar production varies flexibly with income. 20 Instead, we

consider an alternative strategy in which we expand our sample to all tracts, including

those not around state borders, and estimate two specifications that allow for flexible

non-linearities in this empirical partial elasticity.

The first of these specifications divides tracts into “bins” based on their average

income level and estimates separate coe”cients for each bin. Letting (ς → Binb) denote

that tract ς falls within income bin b, we estimate

logKε = ϖ
Bin

0
sε +

∑

b ↑=b0

ϖ
Bin

b
sε ↘ (ς → Binb) + x

→
ε
ωBin + ϱ

Bin

ε
. (5)

Thus, ϖBin

0
gives the empirical partial elasticity associated with base income bin b0, and

the ϖBin

b
coe”cients tell us how partial elasticity in income bin b di!ers from that of the

base income bin. In practice, we will set the base income bin as the bin corresponding

to median tract-level income level such that ϖ
Bin

0
gives the partial elasticity at this

median income level.

Next, we estimate a model that allows for heterogeneity in the partial elasticities

with cubic B-splines,

logKε =
H∑

h=1

ϖ
Spl

h
sε ↘ Bh(Yε) + x

→
ε
ωSpl + ϱ

Spl

ε
, (6)

where B1(Y ) to BH(Y ) are standard basis functions for a cubic B-spline degree H. This

specification balances allowing for arbitrary non-linearities while estimating relatively

few parameters. The estimated partial elasticity for a given income level Y is a weighted

average over the H spline coe”cients, where the weights are given by the basis functions

Bh(Y ).

Controls All regressions include controls for tract-level income, electricity prices,

electricity prices interacted with income, solar irradiance, population density and pop-

ulation density squared, and a battery of tract-level demographic measures. The border-

20These discontinuity regressions rely on within-border variation in subsidies, and thus, identification
of a non-linear e”ect of subsidies requires within-border variation in subsidies within narrow bins in
income. Since we only have tract-level income available, there is insu!cient variation in subsidies
across all income bins.
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discontinuity regressions include the border-specific polynomials introduced above while

the nonlinear specifications include census region or census division fixed e!ects.

2.4 Reduced-Form Results

Border-Discontinuity Regressions Table 1 reports parameter estimates from equa-

tion (4), the border discontinuity regression with partial elasticity linear in log income.

Each column corresponds to a di!erent specification. Specifications vary the bandwidth

around state borders (either 40 or 80 miles from state borders) and the degree of the

polynomials in location relative to the state border (polynomials of degree 0, 3, and

5).21

Column (3) contains our preferred specification, with a 40-mile bandwidth and 3rd-

degree border distance polynomials. The estimates imply that a one cent per kWh

increase in subsidies is associated with a 4.3% increase in solar production for a tract at

the median income level and that this elasticity is decreasing in tract-level income. The

same one cent per kWh subsidy increase is associated with only a 3.4% increase in solar

production per capita for a tract at the 90th percentile of the income distribution. In

other words, the empirical partial elasticity of solar production with respect to subsidies

for tracts at the median income level is 28.0 percent higher than the partial elasticity

for tracts at the 90th percentile income level. The estimates in column (4), where we

use an 80-mile bandwidth, are similar, implying that the partial elasticity at the median

income level exceeds that at the 90th percentile by 27.7 percent.

The first two columns of Table 1 show results when we include polynomials of degree

0 in location relative to state borders, equivalent to including border fixed e!ects. These

specifications result in elasticities that have a similar slope with respect to income but

are slightly higher in levels than our main specification—a one cent per kWh increase

in subsidies increases solar production by 6.0 to 6.5 percent for a tract at the median

income. These partial elasticities for the median income tracts are 15.3 to 18.7 percent

higher than those of tracts at the 90th income percentile.

Finally, columns (5) and (6) of Table 1 use fifth-degree border polynomials and again

find similar results. In these specifications, the partial elasticity of solar production

with respect to subsidies is 38.1 to 43.5 percent higher for tracts at the median income

compared to those at the 90th percentile. Taken together, we find that the partial

21Appendix B.5 shows results for various other bandwidths and border-specific-polynomial degrees.
The results are similar except for the smallest bandwidths.
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elasticity of solar production is strongly decreasing in tract-level income.
Table 1: E”ect of Subsidies on Log Production per Capita

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 7.52↓↓↓ 8.28↓↓↓ 6.35↓↓↓ 7.03↓↓↓ 7.85↓↓↓ 7.78↓↓↓

(1.39) (1.51) (2.30) (2.30) (2.53) (2.44)
Subsidy ↘ Log Income -1.44↓ -1.89↓↓ -1.82↓↓↓ -1.94↓↓ -2.07↓↓↓ -2.11↓↓↓

(0.717) (0.926) (0.425) (0.847) (0.449) (0.681)

Fit statistics
Observations 20,187 30,410 20,187 30,410 20,187 30,410
R2 0.49 0.49 0.55 0.55 0.56 0.56

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coe”cients from Equation (4). Sample is limted to tracts within either
40 or 80 miles bandwidths to state borders. All regressions include controls for
tract-level income, electricity prices, electricity prices interacted with income, solar
irradiance, population density and population density squared, a battery of tract-level
demographic measures, and border-specific polynomials in location relative to border.

One threat to identification in these border-discontinuity regressions is the potential

for household preferences for solar panels to be discontinuous at state borders. This

would be the case if, for example, households with a stronger preference for solar panels

tended to locate on the side of the border with more generous subsidies. We investigate

this type of sorting in Appendix B.2, where we look for discontinuities in household

demographic characteristics around state borders. Our findings show no evidence of

sorting around state borders.

Beyond subsidies, some states implement other programs designed to encourage so-

lar installations, such as state-sponsored financing programs for solar installations or

incentives for builders to incorporate solar panels into newly built structures. Another

potential threat to identification is that these other state measures may lead to dis-

continuities in solar installation rates at state borders. In Appendix B.5, we address

this by rerunning the border discontinuity regressions with additional controls for these

other state-level programs aimed at increasing solar installations that are not included

in our subsidy measures. Our results remain robust even with the inclusion of these
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(a) Partial elasticity using income bins. (b) Partial elasticity using cubic B-splines over income.

Figure 3: Partial elasticity of solar production across the tract-level income distribution. Panel (a)
estimates a separate partial elasticity for 11 income bins, while panel (b) uses cubic B-splines. Both
present estimates relative to a tract at the median income. We estimate the partial elasticity to be
7.81 for the median income bin on the left and 7.36 at the median income using splines on the right
when using census division fixed e”ects. The green line shows in each figure shows estimates from a
regression which includes regions fixed e”ects and the orange line shows estimates from a regression
which includes division fixed e”ects. All regressions include the controls variables listed in the text.
Standard errors are clustered by state. Cubic B-splines have 7 knots evenly spaced based on population
weighted income.

additional controls.

Note that we can only use tracts with positive solar production when estimating

regressions with logKε as the outcome. About a quarter of tracts have zero production

in the Deepsolar data. In Appendix B.6, we explore how our focus on tracts with pos-

itive production a!ects our conclusions on cost-e!ectiveness. Empirically, we estimate

border discontinuity models to assess the impact of subsidies on the likelihood of a

tract having any installations, a relationship we term the “extensive margin” elasticity.
22 We show that 1) this extensive margin elasticity is small in magnitude, and 2) like

our baseline partial elasticity estimates, the extensive margin elasticity is decreasing in

income. The results suggest that restricting our sample to tracts with positive solar

production in the baseline regressions is unlikely to change our main conclusions and

would likely only strengthen them.

Nonlinear Specifications Figure 3 demonstrates results from two approaches that

allow the partial elasticity to vary non-linearly with income—using bins in log income

and cubic B-splines over income levels—across specifications with either census region

22Our approach is in the spirit of the “hurdle” approach of Gillingham and Tsvetanov (2019).
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or division fixed e!ects.23 Figure 3a shows estimates of the ϖ
Bin

b
from equation (5),

where we divide tracts into 11 income “bins” based on their income level. The orange

line shows estimates of ϖBin

b
across income bins from a regression that uses census region

fixed e!ects, and the green line shows estimates from a regression with census division

fixed e!ects. Recall that ϖ
Bin

b
measures the partial elasticity in income bin b relative

to the partial elasticity in tracts with the median income level. We obtain estimates of

ϖ
Bin

0
, the parameter which gives the partial elasticity in tracts with the median income

level of 6.0 in the regression with region fixed e!ects and 7.8 in the regression with

division fixed e!ects.

In both specifications, the partial elasticity of production is relatively similar for

tracts with income levels below the median income but drops steeply for tracts above

the median income. Using the specification with region fixed e!ects, a tract at the 90th

percentile of income (contained by the 117K income bin) has a partial elasticity of

3.9—implying that the partial elasticity for a tract at the median income is 54 percent

higher than a tract at the 90th percentile. Similarly, the estimates from the regression

with division fixed e!ects imply that the partial elasticity is 43 percent higher for a

tract at the median income than a tract at the 90th percentile.

Figure 3b shows results where we use cubic B-splines to estimate partial elastici-

ties as a smooth and continuous function of income while still allowing for arbitrary

nonlinearities. To maintain comparability to the bin specification, we normalize the

estimated partial elasticities relative to that of the median income. Again, the results

from these specifications are similar to those of our other specifications. We estimate

that a one-cent increase in subsidies leads to a 5.6 or 7.4 percent increase in solar pro-

duction using region or division fixed e!ects, respectively. Meanwhile, a tract at the

90th percentile only increases solar production by 4.0 or 5.5 percent in response to the

same one-cent subsidy increase. Thus, a median tract has a partial elasticity that is

33.5 to 39.2 percent higher than a tract at the 90th income percentile. Unlike when we

use bins, the spline specification suggests that the partial elasticity may be considerably

higher for the lowest-income tracts, though this increase is not statistically significant.

Regardless of the specification, we consistently find that the partial elasticity of

residential solar production per capita decreases with income, with the steepest drop

above median income. Our results suggest that this partial elasticity may further

23These models use data from all census tracts and include controls for tract-level income, electricity
prices, electricity prices interacted with income, solar irradiance, population density and population
density squared, and a battery of tract-level demographic measures.
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increase in locations with below-median income relative to those with median income;

however, this increase is not consistent across specifications and is not statistically

significant.

Robustness In Appendix B.5, we examine the robustness of our reduced-form re-

sults to alternative outcomes (total production, total panels, panels per capita, in-

stallations, installations per capita), alternative controls, alternative bandwidths for

border-discontinuity regressions, and alternative means of estimating heterogeneity in

the partial elasticity by income level. The results remain qualitatively the same in

each case: the partial elasticity of solar production is decreasing in tract-level income.

These results strongly suggest that the cost-e!ectiveness of residential solar subsidies is

decreasing in household income and, thus, that a decrease in subsidies for high-income

households and an increase in subsidies for low-income households could achieve in-

creased residential solar production at the same fiscal cost.

3 Quantitative Model and Estimation

Our reduced-form results suggest that employing means-tested subsidies may allow

policymakers to increase solar production without increasing fiscal costs. That analysis

does not allow us to determine the magnitude of the benefits of introducing federal

means-tested subsidies nor the optimal schedule of means-tested subsidies. Here, we

construct and structurally estimate a partial equilibrium model of solar panel demand

with borrowing constraints. Homeowners in the model make a once-and-for-all decision

whether to install solar panels, considering the lifetime costs and benefits. Homeowners

face borrowing constraints, meaning low-income homeowners may not install panels

despite the long-run benefits.24 We use the estimated model to evaluate the equity and

e”ciency consequences of introducing various income-contingent subsidy schemes and

to quantify the optimal subsidy schedule.

3.1 Model

Homeowners are indexed by i, and time is indexed by t = 1, ...T , which in our empirical

setting will be years. In t = 1, homeowners choose whether to install solar panels,

24Renters do not typically install solar panels. We therefore only model the installation decision of
homeowners and assume households who are not homeowners do not install solar panels.
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considering the lifetime costs and benefits of installation.25 Let mi → {0, 1} indicate

whether or not a homeowner installs solar panels and let Ni be the number of solar

panels homeowner i installs conditional on installation.

Each homeowner has access to solar panel technology that can produce a stream of

solar energy of {Ait}Tt=1
over time, where Ait represents the amount of electricity each

panel installed by homeowner i will produce in year t. This measure of solar production

captures both di!erences in sunlight at their residence and depreciation of solar panels

over time.

Budget Constraint Homeowners who install panels pay an upfront installation cost

but receive value from the electricity that the panels produce over time. Let the function

p
Ins

j
(Ni) denote the monetary cost of installing Ni panels and let pj denote the price of

electricity, where j indexes the state in which a homeowner lives.26 The total market

value of electricity produced by homeowner i in period t is therefore equal to miNiAitpj.

We can think of this as both the value of reducing the amount of electricity a homeowner

needs to purchase from the grid and the value of selling solar electricity back to the

grid.

Homeowner also receive subsidies for installing solar panels and for the electricity

they produce. Let s
Upfront

i
(·) denote the upfront subsidy homeowner i would receive

at the time of installation and let s
Flow

i
(·) denote the flow subsidy the homeowner i

would receive each year over the life of the panel. When we take the model to the data,

we will consider investment tax credits and sales tax rebates as upfront subsidies. We

allow upfront subsidies to depend on the cost of the installation, pIns
j

(Ni), to reflect

that investment tax credits and sales tax rebates depend on the cost of installation.

We also allow upfront subsidies to depend on a homeowner’s federal income tax burden

to reflect that the federal investment tax credit is a nonrefundable tax credit, meaning

that the amount a household receives cannot exceed the tax burden that they would

otherwise owe.27 Empirically, we categorize property tax rebates, renewable energy

25Burr (2014) use an optimal stopping model where households decide whether to install each period,
exiting the market if they do choose to install. Gillingham and Tsvetanov (2019) presents evidence
that households in most states do not treat installation as an install or wait decision.

26We assume that electricity can be purchased and sold back to the grid at this same price. For
homeowners in the 39 states with net metering, homeowners receive the retail price of electricity for
the electricity they sell back to the grid. In states without net metering, there may be di”erent
prices for electricity purchased by the homeowner and electricity sold by the homeowner. It would
be straightforward to limit our estimation sample to states with net metering. Ito (2014) finds that
consumers respond to average, rather than marginal, electricity prices.

27Kiribrahim-Sarikaya and Qiu (2023) uses data from Phoenix, Arizona to analyze the e”ects of the
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credits, and production tax credits as flow subsidies. We allow flow subsidies to depend

on installation costs to reflect that property tax rebates often depend on the cost of

installation and on Ait to reflect that renewable energy credits and production tax

credits depend on the amount of electricity produced.

The homeowner’s budget constraint in year t = 1 is given by

ci1 + ai2 +mip
Ins

j
(Ni) = yi ↔ ↼ (yi) + (1 + r) ai1+

mi

(
NiAitpj + s

Upfront

i

(
p
Ins

j
(Ni) , ↼ (yi)

)
+ s

Flow

i

(
p
Ins

j
(Ni) , Ait

))
, (7)

where ci1 is consumption of the numeraire good in period t = 1, ai2 is the amount

the homeowner saves for the following period, yi is household income, ↼ (yi) is federal

income tax burden (not including federal solar credits), ai1 is initial assets, and r is the

real interest rate. Due to data limitations, we assume that income for each household

is constant over time. We consider a version of the model with a stochastic income

process in Section 5.1.

After the first period, homeowners continue to make consumption-savings decisions

and receive electricity and flow subsidies from installed solar panels. Additionally, while

federal tax credits are nonrefundable, excess credits can be carried over to the following

years. We can write the homeowner’s budget constraint for t > 1 as

cit + ait+1 = yi ↔ ↼ (yi) + (1 + r) ait+

mi

(
NiAitpj + s

Flow

i

(
p
Ins

j
(Ni) , Ait

)
+ s

Carry

it

)
, (8)

where s
Carry

it
gives the value of any federal tax credits that have been carried over from

previous years.

Homeowner face a borrowing constraint in each period. We write this as

ait+1 ≃ ā, (9)

where ā is the exogenously-given level of minimum assets a homeowner must maintain.

We set ā = 0 in our baseline specification. We consider alternative borrowing limits in

Section 5.2.28 Our results are not sensitive to the value we set for ā.

nonrefundable nature of the federal income tax credits on solar installation rates across the income
distribution.

28It would also be possible to allow the borrowing limit to vary by state and whether or not the
homeowner has installed solar panels to better reflect the availability of financing programs for solar
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It is important to highlight that we abstract away from changes in subsidies and

prices over time. We can therefore view our model as capturing the forward-looking

installation behavior for homeowners who expect subsidies and prices to remain at their

current levels.29 Furthermore, our model di!ers from those in De Groote and Verboven

(2019), Langer and Lemoine (2022), and Feger, Pavanini, and Radulescu (2022), by

treating the installation decision as a one-time event, with homeowners permitted to

install panels only in the beginning of the model. Incorporating a dynamic installa-

tion decision into the model would significantly increase the computational burden of

estimating the model and solving for the optimal policy. As a result, our model is not

well suited to analyze how dynamic subsidy paths will a!ect the timing of installations.

Instead, the main goal of our model is capturing di!erences in installation behavior

across the income distribution for homeowners facing a given set of subsidies.

Utility Homeowners’ lifetime utility is given by

T∑

t=1

ϖ
t↔1

(cit)
1↔ϖ

1↔ ↽
+mi⇀i,

where ϖ = 1

1+r
is the homeowner discount rate, ↽ is a preference parameter, and ⇀i gives

the nonpecuniary benefit of a solar installation for homeowner i, reflecting inconvenience

costs or other individual preferences for installing solar panels. We specify ⇀i as

⇀i = ⇀0 + ⇀CollX
Coll

ε
+ ⇀PolX

Pol

ε
+ ⇁εi,

where X
Coll

ε
is the fraction of individuals with a college education in the census tract

in which the homeowner lives, XPol

ε
is the fraction of voters in the county who voted

Democrat in the 2016 presidential election and εi is a logit preference draw with scaling

parameter ⇁. Let ⇀̄i = ⇀i ↔ ⇁εi denote the portion of non-pecuniary utility that does

not contain an idiosyncratic component.

panel installations.
29Hughes and Podolefsky (2015) and Anderson, Kellogg, and Sallee (2013) find that consumers do

not correctly forecast the extent to which prices change over time and expect future prices to be
similar to current prices. In Section 5.4, we re-calculate optimal subsidies under the assumption that
installation prices drop to 50% of their current levels.
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Installation Probabilities Previous research has found that the number of panels

per installation does not strongly correlate with rooftop solar subsidies.30 We therefore

abstract away from the intensive margin decision and parameterize Ni as a reduced-

form function of homeowner income and tract-level characteristics. We estimate the

parameters of this reduced-form function jointly with the other structural parameters

using indirect inference. We provide additional details in Appendix C.2.

Each homeowner makes a discrete choice over whether to install solar panels and

then makes consumption-savings decisions. Given that εi has a logit distribution, the

probability homeowner i installs solar panels is given by

Pi =

exp

(
1

ϱ

∑
T

t=1
ϖ
t↔1 (cm=1

it )
1→ω

1↔ϖ
+ ⇀̄i

)

exp

(
1

ϱ

∑
T

t=1
ϖt↔1

(cm=1
it )

1→ω

1↔ϖ
+ ⇀̄i

)
+ exp

(
1

ϱ

∑
T

t=1
ϖt↔1

(cm=0
it )

1→ω

1↔ϖ

) ,

where c
m=1

it
and c

m=0

it
give the homeowner’s optimal consumption level in period t

conditional on installing and not installing solar panels, respectively.

The parameter ↽ plays a crucial role in our analysis as it dictates how the elasticity

of installations varies across income levels. To see this, note that partial elasticity of

installation with respect to upfront subsidies sUpfront is given by

ϑ logPi

ϑsUpfront
=

(cm=1

i1
)↔ϖ

⇁
(1↔ Pi) , (10)

where c
m=1

i1
gives the homeowner’s optimal consumption choice in period 1 conditional

on installing panels. We provide a derivation of equation (10) in Appendix C.1. Home-

owners with high income and asset levels will generally have higher values of cm=1

i1
. If ↽

is large, homeowners with high income and asset levels will be less responsive in their in-

stallation decisions, all else equal.31 This lower responsiveness is because a larger value

for ↽ means the marginal utility of consumption decreases more rapidly as consumption

levels increase.

Additionally, a higher installation probability Pi decreases responsiveness to sub-

30Colas and Reynier (2024) find that installation size is not sensitive to monetary incentives, but the
probability of installations is highly responsive to monetary incentives. They conclude that accounting
for the extensive margin installation decision is much more important than the intensive margin decision
of the number of panels to install.

31To see this, note that if φ = 0, the partial elasticity of installation across homeowners will not
depend on cm=1

i1 , and variation across homeowners will only be due to di”erences in installation prob-
ability Pi.
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sidies. This decrease reflects that homeowners with a higher Pi are more likely to be

inframarginal—their installation decision is una!ected by a marginal subsidy change.

Finally, the parameter ⇁ determines the overall level of the partial elasticity of installa-

tions with respect to subsidies. A larger value of ⇁, representing stronger idiosyncratic

preferences for solar installations across all homeowners, implies that homeowners will

be less responsive to subsidies in their installation decision.

3.2 Data

For structural estimation, we combine the data on subsidies, electricity prices, and

residential solar installations described in Section 3.2 with income and homeownership

data from the ACS and solar irradiance data from Google Project Sunroof. Here, we

give an overview of the main data sources that we do not use in our reduced-form

analysis. We provide additional details on the data we use for structural estimation in

Appendix C.2.

Solar Potential We use data from Google Project Sunroof (GPS) to construct the

solar potential for panels installed by each homeowner. GPS applies a machine-learning

framework to satellite imagery and provides measures of solar production capacity per

panel at the tract level, accounting for local weather conditions, rooftop sizes, and

shading. We assume a homeowner’s yearly solar potential for newly installed panels,

Ai1, is equal to the mean household solar potential in the GPS data for the homeowner’s

tract. We assume solar panel e”cacy depreciates by a constant rate of 0.5% each year

before fully depreciating after 20 years.32

Installation Prices We assume installation prices are given by the function p
Ins

j
(Ni) =

p
0,Ins

j
+ Nip

1,Ins

j
, where p

0,Ins

j
is a fixed cost and p

1,Ins

j
is a per-panel cost. We take es-

timates of p0,Ins
j

and p
1,Ins

j
from Colas and Reynier (2024), who estimate these pricing

functions using data from Tracking the Sun, a project collecting data on solar panel

installations. As Tracking the Sun does not cover all states within the US, they assume

that pricing functions are common within each Census region.

Income and Initial Assets Simulating our model requires the household income

distribution for homeowners across the United States. For this, we construct tract-

32Jordan and Kurtz (2013) find a median degradation rate of 0.5% in their review of the literature
on depreciation rates of solar panels.
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level income distributions for homeowners by combining 1) tract-level data on average

household income, Gini coe”cient, and number of households from the ACS, and 2)

household-level data on homeownership and income from the ACS. We describe this

procedure in detail in Appendix C.3.

An additional empirical issue is that we do not observe initial assets, ai1. We treat

initial assets as a latent variable and estimate a probability distribution over this latent

variable for each homeowner simultaneously with the rest of the model’s structural

parameters. Further details of this procedure are in Appendix C.4. We then integrate

over the distribution of the latent variable when simulating model outcomes.

3.3 Estimation

Our primary strategy is to estimate the model by indirect inference, where we target

regression coe”cients from our reduced-form results and moments describing the dis-

tribution of installations across income and demographic groups. We first compute a

set of “auxiliary models” that describe installation behavior in the data. Then, given

a vector of structural parameters, we simulate the structural model and calculate the

auxiliary models with simulated data. We repeat this procedure for di!erent values

of structural parameters and search for the parameters such that the auxiliary models

computed from the model match those from the data.

Formally, let ϖ̄ denote the vector of auxiliary model parameters we estimate in the

data and let ϖ̂ (#) denote the same auxiliary model parameters computed from the

structural model given an arbitrary vector of structural parameters denoted by #. The

estimated vector of structural parameters is given by

#̂ = argmin
!

{(
ϖ̂ (#)↔ ϖ̄

)→
W

(
ϖ̂ (#)↔ ϖ̄

)}
,

where W is a weighting matrix.

We use the following auxiliary models33:

AM 1: Border discontinuity regression coe”cients from estimation of equa-

tion (4). Specifically, we regress tract-level log production on subsidies

and subsidies interacted with log average income for tracts within 40

miles of a border with 3rd degree polynomials in distance from each

border, and the same controls as column 3 of Table 1.

33We show the full set of auxiliary model parameters we use in Table A9 in Appendix C.6.
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AM 2: Coe”cients from regressions of tract-level installations per capita on

tract-level average income.

AM 3: Average panels per capita by income quintile.

AM 4: Coe”cients from regressions of tract-level installations per capita on

tract-level demographics.

AM 5: Coe”cients from a regression of tract-level average number of panels

per installation on tract-level characteristics.

The parameters are well-identified. As previously noted, the parameter ⇁ dictates

the overall partial elasticity of installations with respect to subsidies across all home-

owners, while ↽ dictates how these elasticities vary with household income and assets.

“AM 1” and “AM 2” jointly identify these two parameters. “AM 1” describes how

the elasticity of installations with respect to subsidies varies by income, and “AM

2” describes how installations vary with income. The parameters ⇀0, ⇀Coll, and ⇀Pol,

which determine the nonpecuniary benefits of installations, are identified by “AM 4”,

which describes how installations vary with tract characteristics. Finally, “AM 5” pins

down the parameters that determine how the size of installations varies by demographic

group.

3.4 Model Fit

We present the full set of estimated parameters in Appendix C.5. The estimated model

fits both targeted and untargeted moments well. We give an overview of model fit here

and leave additional results in Appendix C.6.

Targeted Moments Figure 4a plots panels per household (including non-homeowners)

across percentiles of tract-level income in the model and data. The red line shows the

panels per household in the data, while the black dashed line shows the simulated

panels from the estimated model. The two dotted lines give the 95% confidence in-

terval of the simulated moments, which we calculate by re-estimating the model and

re-simulating outcomes using 100 bootstrap samples. The model does an excellent job

of matching di!erences in the number of solar panels per household across the entire

income distribution.
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(a) Panels: Income (b) Partial Elasticity

Figure 4: Panel (a) shows panels per household across percentiles of tract-level income in the model
and data. The red line shows the panels per household in the data, while the black dashed line shows
the simulated panels from the estimated model. The two dotted lines give the 95% confidence interval
of the simulation moments. Panel (b) shows partial elasticities across income levels in the model and
data. These are estimated using the same set of controls as Figure 3 with census division fixed e”ects.
The two dotted lines give the 95% confidence interval of the simulated moments, which we calculate
by re-estimating the model and re-simulating outcomes using 100 bootstrap samples.

As discussed in Section 2, variation in the partial elasticity of solar production across

the income distribution is critical for determining the cost-e!ectiveness of subsidies by

income level. To assess the model fit in this dimension, we estimate the relationship

between log tract-level installations and subsidy generosity across income groups in the

model and the data. We again divide tracts into income bins based on the average

income level in each census tract. Let (ς → Binb) denote that tract j falls within

income bin b. Using both actual data and simulated data from the model, we run

regressions of the form

logKε =
∑

b=1

ϖ
Fit

b
sε ↘ (ς → Binb) + x

→
ε
ωFit + ϱ

Fit

ε
, (11)

where Kε is the total solar production in tract j, sε denotes the subsidy generosity

measure from Sexton et al. (2021) which we used in our reduced-form analysis, and b

indexes income groups. We use the same controls as in Figure 3, with census division

fixed e!ects. The ϖ
Fit

b
parameters, therefore, measure the partial elasticity of solar

production with respect to subsidies for households income bin b. Figure 4b plots the

estimates of these parameters for the model and the data. The model fits the empirical

partial elasticity of installations with respect to subsidies across income levels well.
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Figure 5: Untargeted Moments: Comparison to RECS installation rates. The bars show the percent of
households in each income bin who have solar panels in the RECS microdata and the model simulation.
RECS has income data in 8 income categories. We combine categories such that the bins in the figure
roughly correspond to income quartiles in 2015.

Untargeted Moments We now compare simulated results from the model to data

not targeted in estimation to further assess model validity. The 2015 Residential Energy

Consumption Survey (RECS) has income and solar installation status data for 5,700

households across the United States, along with data on other energy-related goods

and behaviors. Figure 5 shows the percent of households with solar panels by income

quartile from our model simulations and the RECS data.34 The fit is reasonably good,

though our model does predict lower installation rates for high-income levels than in

the RECS data.

Comparison to Existing Literature Several other studies use diverse methods

and empirical applications to credibly estimate the e!ect of subsidies on household

demand for solar panels (Hughes and Podolefsky, 2015; Crago and Chernyakhovskiy,

2017; Gillingham and Tsvetanov, 2019; Colas and Reynier, 2024). We use our estimated

model to reproduce results from those studies, the details of which are in Appendix

C.7. For each of these four studies, our replication is consistent with the results of the

respective study.

34Income in RECS data is presented in income categories. We combine categories such that the bins
in the figure roughly correspond to income quartiles in 2015.
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Figure 6: Model-Based Decomposition. The graph shows the average number of installations per
homeowner across deciles of household income over various model specifications. See text for details
on each specification.

4 Counterfactuals

4.1 Why are Installations Increasing in Income?

Current subsidies for residential solar panels in the US are highly regressive, as instal-

lation rates are strongly increasing in household income (Borenstein and Davis, 2024).

As our first counterfactual, we use our estimated model to understand the mechanisms

driving this positive correlation between income and installation rates under the current

subsidy scheme.

Five main mechanisms in our model collectively generate a relationship between

household income and installations per homeowner. First, high-income households

tend to live in states with more generous subsidies and higher electricity prices.35 Sec-

ond, the Federal Investment Tax Credit is nonrefundable, and therefore, low-income

households may not be able to take full advantage of this tax credit because their tax

burden is too low. Third, households face borrowing constraints, and therefore, low-

income households may not be able to a!ord solar panels despite the long-run monetary

benefits. Fourth, high-income households may have stronger preferences for installa-

35The tract-level correlation between average income and electricity prices is 0.18. The correlations
between average income and property taxes, production subsidies, and cost subsidies are 0.11, 0.10,
and 0.06, respectively.
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tions.36 Finally, di!erences in income and assets imply di!erent marginal utilities of

consumption.

We perform a model-based decomposition to understand the role played by each

of these features in generating the positive relationship between household income and

installations. Specifically, we remove each of these features one by one and re-simulate

the model. All changes to the model specification are cumulative.37 Recall that we

only consider homeowners in our analysis Therefore, we plot the relationship between

income and installations per homeowner rather than household.38

The results are displayed in Figure 6. The solid red line shows the baseline case. Less

than 0.1 percent of homeowners in the bottom income decile install panels compared to

3.6 percent of homeowners in the top decile. We begin our decomposition by removing

all spatial factors and assuming all subsidies, prices, and levels of solar irradiance are

drawn randomly from their respective unconditional distributions. This leads to a slight

increase in installations for poorer households, as states with lower income levels tend

to have less generous subsidies and lower electricity prices.

The non-refundable nature of Federal Investment Tax Credits may play an essential

role in explaining low installation rates for low-income households. We next simulate a

version of the model in which we additionally assume that the Federal Investment Tax

Credit pays in full in the year of installation. This change leads to a large increase in

installations for lower income levels but no change in installations for households with

higher income, who already have a large enough tax burden to receive the full credit in

the year of installation.

Next, we simulate a version of the model in which households additionally do not face

a borrowing constraint and can borrow freely against future income. This change leads

to a large increase in installations for poorer households but no change for higher-income

households, who do not need to borrow to finance solar panels. We next remove the

correlation between household income and preferences by setting X
Coll

ε
and X

Pol

ε
to the

median values in the data. This equalization lowers installation rates for high-income

households. Finally, we remove the role of income directly by setting all household

36The correlation between income and tract-level college-educated share and democrat share capture
these di”erences in preferences.

37In Appendix C.9, we perform these modifications individually, rather than cumulatively.
38We show the same graph with installations per household, rather than homeowner, in Appendix

C.9. Homeownership rates are strongly increasing in household income. Therefore, the installation
rates per household, including non-homeowners, increase more strongly in income than those shown
here.

30



income levels to the national mean. This fully removes the relationship between income

and installations.

In summary, this decomposition suggests that borrowing constraints and the non-

refundability of the Federal Investment Tax Credit play major roles in generating the

positive relationship between installations and income. Preferences and spatial di!er-

ences between prices, subsidies, and sunlight play relatively minor roles.

4.2 Introducing Income-Contingent Subsidies

We now analyze the cost-e!ectiveness of introducing small income-contingent subsidies

to the current subsidy scheme. Specifically, we calculate the additional solar capacity

per dollar of public funds associated with income-contingent subsidies. To calculate

this, we divide households into 20 income groups. We then simulate installations 1)

given the current system of subsidies and 2) where we also o!er small, targeted subsi-

dies for households of a given income group. We calculate the additional solar capacity

per dollar for that income group as the increase in solar capacity divided by the in-

crease in fiscal cost. We repeat the process for all income groups. We assume these

income-contingent subsidies are upfront subsidies: they are paid in full at the time of

installation. We compare the e”cacy of upfront subsidies to flow subsidies in Section

4.5.

The results are presented in Panel (a) of Figure 7. Solar capacity per dollar of public

funds is decreasing in household income. Introducing subsidies targeted at households

with an income of 40,000 leads to an increase of 0.25 kWh of solar electricity per

additional dollar of subsidies. On the other hand, subsidies targeted at high-income

households are barely 70% as cost-e!ective: subsidies targeted at households with in-

come over 200,000 lead to 0.18 kWh of solar electricity per dollar.

As highlighted in Section 2, a key determinant of the cost-e!ectiveness of introduc-

ing income-contingent subsidies is the number of non-additional households relative to

additional households. To illustrate how this relationship varies across the income dis-

tribution, we calculate the percent of targeted subsidies for each income group received

by households who choose to install panels absent the subsidy increase. Panel (b) of

Figure 7 shows the results. The percentage of non-additional households is strongly

increasing in income. For households with an income of 40,000, roughly 40% of tar-

geted subsidy funds go to households who would already install solar panels absent the

targeted subsidies. The percent of non-additional households is over twice this for high-
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(a) Additional production per dollar (b) Percent of installations non-additional

Figure 7: Cost-e”ectiveness of introducing income-contingent subsidies to the current subsidy scheme.
Panel (a) shows the change in solar capacity per dollar of additional fiscal cost associated with in-
troducing income-contingent subsidies to each income group. Panel (b) shows the percent of income-
contingent subsidy funds received by non-additional households.

income households: over 55% subsidies for households with income over 200,000 are

received by households who would already install panels absent the subsidy increase.

4.3 Production-Maximizing Subsidies

Next, we consider a federal government that chooses a national income-contingent sub-

sidy schedule to maximize total solar production subject to the constraint that total

government spending must be no greater than spending under current subsidies. We

hold all other state and federal subsidies constant and again assume that the govern-

ment pays income-contingent subsidies upfront.39 Note that since this objective does

not account for household utility, we have removed the equity rationale for means-

tested subsidies as there is no motive for the government to redistribute from rich to

poor households. In Appendix C.10, we formalize the government’s problem and derive

its first-order conditions. To solve for the optimal subsidies, we numerically calculate

the system of income-contingent subsidies that satisfy these first-order conditions.

The results are displayed in Table 2 and in Figure A14. Figure 8a presents the

production-maximizing subsidies (solid red line) and the current subsidies (black dot-

ted line) as a function of income. Specifically, each line shows the average present

discounted value of subsidies a household of a given income level would receive con-

39We compare the e!cacy of upfront subsidies to flow subsidies in Section 4.5. We do not evaluate
the optimality of the overall level of subsidies. Colas and Reynier (2024) find that subsidy levels are
suboptimally high in nearly all US states.
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(a) Average Subsidy (b) Panels per Household

Figure 8: The figure on the left shows the average present discounted value of subsidies received for
an installation across income levels under various subsidy schemes. The figure on the right shows the
average panels per household across income levels under these same subsidy schemes.

ditional on installing solar panels.40 Moving to the production-maximizing subsidies

involves increasing subsidies for low-income households and decreasing subsidies for

high-income households. Under the production-maximizing schedule, households in the

first income quartile receive 12,000 in subsidies for an installation. In contrast, house-

holds in the top income quartile receive less than 7,000. Figure 8b and Panel II of

Table 2 show simulated installations across the income distribution under both subsidy

schemes. Installations increase by nearly 50% for households in the first income quartile

while installations of households in the top income quartile decrease by roughly 35%.

As shown in Panel III of Table 2, these changes in subsidies and the profile of

installations lead to a much more equitable distribution of public funds. Switching

from the current subsidy schedule to the production-maximizing subsidy schedule more

than triples the amount of solar subsidies received by households in the bottom income

quartile, from 5.0% of total subsidies to 16.0%. On the other hand, funds received by

households in the top income quartile drop by nearly half, from 47.2% to 25.9% of total

subsidy payments.

Panel IV presents the relative total solar production of the production-maximizing

subsidies. The production-maximizing subsidies increase total solar production by 2.4%

relative to current subsidies with no increase in fiscal cost.
40Current subsidies are increasing in income for two main reasons. First, because the Federal In-

vestment Tax Credit is nonrefundable, households with low income tax burdens cannot receive the
full value of an upfront subsidy. Second, many subsidies pay a fraction of the cost of installation, and
higher-income households tend to install larger, and therefore more expensive, solar panel systems.
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(1) (2) (3)
Prod Utility

Baseline Max Max
I. Production per HH
Income Q1 13.2 33.4 46.3
Income Q2 48.5 64.3 65.2
Income Q3 80.2 80.4 76.0
Income Q4 123.5 96.7 88.4
Overall 68.2 69.8 69.7

II. Subsidy Generosity ( 1000s)
Income Q1 8.1 12.0 13.6
Income Q2 9.3 11.4 11.5
Income Q3 9.8 9.8 9.3
Income Q4 10.4 6.9 5.7

III. % of Public Funds Received
Income Q1 5.0% 16.0% 24.2%
Income Q2 17.8% 27.9% 28.6%
Income Q3 30.0% 30.1% 27.1%
Income Q4 47.2% 25.9% 20.2%

IV. Relative Production 100.0 102.4 102.3

Table 2: Panel I shows the average annual solar capacity in kWh per household in each income quartile.
Panel II shows the average present discounted value of subsidies a household from each income quartile
would receive for a solar installation. Panel III shows the percentage of solar subsidies received by
each income quartile. We measure these subsidies as the present value of all state and federal subsidies
received by households in a given income quartile as a fraction of the total amount received across
all households. Panel IV shows total solar production. We scale total production under the baseline
simulation to 100.
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4.4 Welfare-Maximizing Subsidies

We now solve for the schedule of income-contingent subsidies that maximizes the sum

of all households’ lifetime utility subject to the constraint that net costs, which we

define as total fiscal costs less environmental benefits, must not exceed the current

level. To calculate environmental benefits, we estimate NERC-region-level marginal

damages of electricity production during daytime hours using the estimation strategy

and data from Holland et al. (2020). Our estimates measure the environmental damages

of greenhouse gases and pollutants that fossil-fuel power plans would otherwise emit.

We provide additional details in Appendix C.8. We formalize the maximization problem

and present the first-order conditions in Appendix C.13.

The results are displayed in Column 4 of Table 2 and in the magenta dotted lines of

Figure A14. The utility-maximizing subsidies are strongly decreasing in income, as the

decreasing marginal utility of income gives the government an incentive to redistribute

resources from higher-income households to lower-income households. Households in

the first quartile of the income distribution receive 13.6 thousand dollars on average

for a solar installation, while households in the top income quartile receive less than 6

thousand dollars. Switching to this welfare-maximizing subsidy scheme leads to a 2.3%

increase in solar production and results in a near-equal distribution of public funds

between income quartiles.

4.5 Upfront Vs. Flow Subsidies

We now compare the e”cacy of upfront and flow subsidies at inducing installations

across the income distribution. We first simulate an income-neutral increase in upfront

subsidies, denoted by $s
Upfront. We then simulate an income-neutral increase in flow

subsidies denoted by $s
Flow. For the sake of comparison, we choose both $s

Upfront and

$s
Flow such that the change in fiscal cost associated with each subsidy increase is equal

to a 10% increase in total fiscal costs.

The results are shown in Figure 9. The solid red line shows the percent change in

installations across the income distribution associated with increasing upfront subsi-

dies by $s
Upfront. Consistent with our other results, we find that the upfront subsidy

increase leads to a much larger increase in installations for lower-income households.

Installations for households in the first income decile, for example, increase by 29%,

while installations for households in the top income decile increase by 3%.

The black dotted line shows the e!ect of increasing flow subsidies by $s
Flow. The
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Figure 9: Upfront vs. Flow Subsidies. The lines show the percentage change in installations across
income deciles associated with increasing upfront subsidies (red line) and flow subsidies (black dotted
line). Both subsidy increases lead to a 10% increase in fiscal costs.

increase in installations is significantly muted at the bottom of the income distribu-

tion: installations for households in the bottom decile increase by only 8%. This occurs

because, unlike upfront subsidies, flow subsidies do little to alleviate short-term liq-

uidity constraints for low-income households. Altogether, these results suggest that

upfront subsidies are both more cost-e!ective overall and more e!ective at increasing

installations for low-income households than flow subsidies.

5 Robustness and Additional Results

5.1 Stochastic Income

In this section, we consider a version of our model in which household income follows

a linear Gaussian process with both persistent and transitory shocks, a common way

of modeling stochastic earning processes in the macro and labor literature (see, e.g.,

Storesletten, Telmer, and Yaron (2004), Meghir and Pistaferri (2004), Guvenen (2009),

Heathcote, Storesletten, and Violante (2010), Krueger, Mitman, and Perri (2016), or

Guvenen et al. (2021)). We first give an overview of the model before showing how

stochastic income a!ects our main results—additional model details and results are in

Appendix C.14.

36



Model Let zit denote the persistent component of household i’s income. We assume

this follows an AR(1) process as

zit = ρzit↔1 + εit,

where ρ is a parameter that dictates the persistence of income, and εit is a persistent

income shock drawn from a normal distribution with mean zero and variance ⇁
2

ς
.

Log household earnings in year t are given by

log yit = zit + ϱit,

where ϱit is a normally distributed transitory shock with mean zero and variance ⇁2

φ
. As

is standard, we assume households know the distributions of ϱit and εit but only learn

the values of the two shocks in year t. Households make installation, consumption,

and savings decisions to maximize lifetime expected utility by integrating over the

distribution of future shocks.

We calibrate the parameters ρ, ⇁2

φ
and ⇁

2

ς
using the estimates from Storesletten,

Telmer, and Yaron (2004), who estimate these parameters using earnings data from the

Panel Study of Income Dynamics. We then re-estimate the remaining parameters using

the indirect inference procedure described in Section 3.3. We present the estimated

parameters and model fit in Appendix C.14.2. Both the estimated parameters and

model fit results are very similar to those with the baseline model.

Results The production-maximizing subsidy schedules in the baseline model and the

model with stochastic income are displayed in Figure 10a. The production-maximizing

subsidy schedules are very similar in both models. In Appendix C.14.2, we present the

optimal subsidies, distribution of installations, and production levels associated with

welfare-maximizing subsidies. The optimal subsidy schemes, distribution of installa-

tions, and production levels are very similar to those under the baseline model.

5.2 Alternative Borrowing Limits

In our baseline model, we assumed that households must hold minimum assets of ā = 0.

In this section, we examine the robustness of our results to alternative values of the min-

imum asset level.41 For each alternative minimum asset level, we re-estimate the model

41In all specifications, households may not have negative assets at the end of year T .
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(a) Stochastic Income (b) Borrowing Constraints

Figure 10: The figure on the left shows the average subsides under the production-maximizing subsidy
scheme in the baseline model and a model with a stochastic income process. The figure on the right
shows the average subsides under the production-maximizing subsidy scheme under various levels of
borrowing constraints. For each alternative specification, we re-estimate the model and re-solve for
the production-maximizing subsidies.

and re-solve for the production-maximizing subsidies. The production-maximizing sub-

sidy schedules for each level of minimum assets are displayed in Figure 10b. The

production-maximizing subsidy schedules are very similar across all specifications.

5.3 Maximizing Environmental Benefit

Our main results have focused on a government that maximizes residential solar pro-

duction subject to a fiscal cost constraint. However, a large literature42 highlights that

the environmental benefits of solar panels vary dramatically depending on where the

solar panels are installed. Therefore, the subsides which maximize solar production are

not necessarily the best for the environment.

In Appendix C.11, we solve for the income-contingent subsidy schedule that maxi-

mizes environmental benefits. As in Section 4.4, we calculate environmental benefits of

solar panels by estimating NERC-region-level marginal damages of electricity produc-

tion during daytime hours using the estimation strategy and data from Holland et al.

(2020). We provide additional details in Appendix C.8. The benefit-maximizing sched-

ule is very similar to the production-maximizing schedule and leads to a 2.3% increase

in environmental benefits of residential solar nationally.

42See e.g. Siler-Evans et al. (2013), Gra” Zivin, Kotchen, and Mansur (2014), Holland et al. (2016),
Millstein et al. (2017), Callaway, Fowlie, and McCormick (2018), Holland et al. (2020), Brown and
O’Sullivan (2020), Lamp and Samano (2023) Borenstein and Bushnell (2022), Sexton et al. (2021),
and Colas and Reynier (2024).
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5.4 Lower Installation Prices

The cost of residential solar installations has decreased substantial over the past two

decades (Barbose et al., 2023). To understand how optimal income-contingent sub-

sidy schedules would adjust if installation prices were significantly lower than current

levels, we calculate the production-maximizing subsidies assuming a 50% reduction in

installation costs in Appendix C.12. The production-maximizing subsidies with lower

installation prices are still strongly decreasing in income.

6 Conclusion

We study the optimal design of income-contingent subsidies for residential solar panels.

We show robust reduced-form evidence that the partial-elasticity of solar production

with respect to subsidies is decreasing in income, suggesting that means-tested subsidies

could induce greater solar production per dollar of public funds compared to income-

neutral subsidies. Simulations from a quantitative model reveal that optimally set

income-contingent subsidies lead to a much more equitable distribution of public funds

and an increase in residential solar production. Therefore, means-tested solar subsidies

are justified on both equity and cost-e”ciency grounds.

Future work could extend the empirical exercise here to other green products, such

as energy-e”cient appliances or heat pumps. The equity-e”ciency trade-o!s associ-

ated with subsidies for heat pumps are likely very di!erent than those for solar panels

subsidies, as heat pump adoption rates do not correlate strongly with income (Davis,

2023). It would also be interesting to consider a government that can o!er financing

programs for solar panels in addition to means-tested subsidies. These financing pro-

grams would alleviate borrowing constraints for low-income households, which would

change the benefits of providing income-contingent subsidies to those households. We

leave these questions for future research.
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A Theoretical Appendix

A.1 Proof of Proposition 1

Consider a variation of s denoted by ωs. We are interested in subsidy variations that

are cost-neutral, such that

dCost =

∫
y

y

ωCost

ωs (y)
ωs (y) dy =

∫
y

y

ωs (y)

(
ϑKy

ϑs(y)
s̄+Ky(s̄)

)
dy = 0 (12)

and that are progressive, meaning that

(y→→ ↔ y
→) (ωs(y→→)↔ ωs(y→)) < 0 (13)

for y→→ ↗= y
→. The total change in production associated with the variation ωs is equal to

dProd =

∫
y

y

ϑKy

ϑs(y)
ωs (y) dy.

We can think of the change in cost associated with ωs as the costs from additional

households, who each receive s̄, plus the costs from non-additional households, who each

receive an additional ωs(y). Explicitly, we can rewrite dCost as the current subsidy level

times the change in production multiplied by a constant:

dCost = s̄↘ dProd+ A, (14)

where we define ∫
y

y

ωs (y)Ky(s̄)dy ↑ A.

Intuitively, A gives the change in cost associated with non-additional households, while

s̄↘ dProd gives the change in cost associated with additional households. The change

in production will be large relative to cost when the cost to non-additional households,

given by A, is small, all else equal. We can rewrite A in terms of cost-e!ectiveness as

A =

∫
y

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy.

Since ωs is decreasing in income, and since ωs is a cost-neutral variation, there must

exist some “cuto!” income level ỹ such that ωs(y) ≃ 0 for y ⇐ ỹ and ωs(y) ⇐ 0 for
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y > ỹ. We can rewrite A as an integral over households with income below ỹ (who

receive subsidy increases), plus an integral over households with income above ỹ (who

receive subsidy reductions):

A =

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy +

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy. (15)

Let ε(ỹ) denote the cost-e!ectiveness associated with this cuto! income level ỹ.

We now consider two cases. First, we consider the case in which ε is decreasing in

income. Second, we consider the case in which ε is increasing in income.

Case 1: ε Decreasing In Income Assume ε is weakly decreasing in income and

ε(y) > ε(y). Thus, it must be the case that ε↔1(y) ⇐ ε
↔1(ỹ) for y ⇐ ỹ and ε

↔1(y) ≃
ε
↔1(ỹ) for y > ỹ with at least one of these two inequalities holding strictly. As ωs (y) ≃ 0

for y ⇐ ỹ, it must be that

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy ⇐

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(ỹ)dy. (16)

Further, since ωs (y) < 0 for y > ỹ, we know that

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy ⇐

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(ỹ)dy. (17)

At least one of the above inequalities must hold strictly, because either ε↔1(y) > ε
↔1(ỹ)

for y ⇐ ỹ or ε↔1(y) < ε
↔1(ỹ) for y > ỹ.

Using these inequalities in equations (16) and (17), we can rewrite equation (15) as

A =

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy +

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy <

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(ỹ)dy +

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(ỹ)dy. (18)

We can rewrite this inequality as

A < ε
↔1(ỹ)

(∫
y

y

ωs (y)
ϑKy

ϑs(y)
dy

)
= ε

↔1(ỹ)↘ dProd.
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Adding s̄↘ dProd, and noting the cost-neutrality constrant, yields

s̄↘ dProd+ A  
=dCost=0

<
(
s̄+ ε

↔1(ỹ)
)
dProd.

Finally, dividing both sides by (s̄+ ε
↔1(ỹ)) > 0 yields

dProd > 0.

Case 2: ε Increasing In Income Assume ε is weakly increasing in income and

ε(y) < ε(y). Thus, it must be the case that ε↔1(y) ≃ ε
↔1(ỹ) for y ⇐ ỹ and ε

↔1(y) ⇐
ε
↔1(ỹ) for y > ỹ with one of these two inequalities holding strictly. Following the logic

from the Case 1, we can then show that

A =

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy +

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(y)dy >

∫
ỹ

y

ωs (y)
ϑKy

ϑs(y)
ε
↔1(ỹ)dy +

∫
y

ỹ

ωs (y)
ϑKy

ϑs(y)
ε
↔1(ỹ)dy. (19)

Following the same algebriac steps as the previous case yields

s̄↘ dProd+ A  
=sCost=0

>
(
s̄+ ε

↔1(ỹ)
)
dProd

which implies that dProd < 0 since (s̄+ ε
↔1(ỹ)) > 0.

A.2 Production-Maximizing Subsidy Schedule in General Model

Consider a government which chooses a subsidy schedule to maximize total solar pro-

duction subject to an exogenously set budget constraint. Specifically, the government

chooses a subsidy function s to maximize

∫
y

y

Ky (s(y)) dy

subject to the constraint that

∫
y

y

Ky (s(y)) s(y)dy ⇐ C
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where C is the maximum fiscal cost. We can write the government’s program as the

Lagrangian:

max

∫
y

y

Ky (s(y)) dy ↔ ▷

(∫
y

y

Ky (s(y)) s(y)dy ↔ C

)
,

where ▷ is the Lagrange multiplier.

The optimal subsidy function must satisfy the government’s first order conditions.

This implies

ϑKy

ϑs(y)
(s↼ (y))↔ ▷

(
ϑKy

ϑs(y)
(s↼ (y))↘ s

↼ (y)↔Ky (s
↼ (y))

)
= 0

for all income levels y, where ωKy

ωs(y)
(s↼ (y)) is the derivative ofKy with respect to subsidies

evaluated at the optimal subsidy level s↼ (y). Dividing both sides by ▷Ky (s↼ (y)) yields

ε
↼(y)

(
1

▷
↔ s

↼ (y)

)
↔ 1 = 0,

where ε
↼(y) ↑

εKy
εs(y) (s

ϑ
(y))

Ky(s
ϑ(y))

is the cost-e!ectiveness of a subsidy increase targeted at

income level y given the production-maximizing subsidy schedule.

Rearranging the above equation yields

s
↼ (y) =

1

▷
↔ 1

ε↼(y)
.

Therefore, if ε↼ is decreasing in income, then s
↼ must also decrease in income.

A.3 Tract-Level Elasticities

Let i index household types and let ki (s) denote production by household type i as a

function of subsidies s. Total solar production in tract ς is given by

Kε =

∫
ki (s) dfε (i)

where fε (i) is the density of household type i in tract ς.

We are interested in the partial elasticity of Kε with respect to subsidies s. This is
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given by

εε ↑
ωKϖ
ωs

Kε

=


ωki
ωs
dfε (i)

Kε

. (20)

Letting εi ↑
εki
εs
ki

denote the household-level partial elasticity of solar production

with respect to subsidies, we can rewrite (20) as

εε =


kiεidfε (i)
kidfε (i)

.

Therefore, the tract-level elasticity, εε, is equal to the production-weighted average

partial elasticity of all households in the tract.

B Reduced-Form Appendix

B.1 Non-Reweighted Border Discontinuities in Subsidy Gen-

erosity and Log Production per Capita

Here, we present border discontinuity graphs for subsidy generosity and log production

per capita where we do not reweight observations as in our main specification. As

before, we define a tract’s location to the nearest border as the positive distance to the

border for tracts on the side of the border with more generous subsidies and the negative

distance to the border for tracts on the side with less generous subsidies. Figure A1

shows the distance to the nearest border for each census tract, with the less generous

side of the border in brown and the more generous side in green. We categorize tracts

into 10-mile-wide bins based on this location relative to the border and regress the

variable in question (either subsidy generosity or log production per capita) on state-

border fixed e!ects and fixed e!ects for these location bins. We run these regressions

separately for high- and low-income tracts.

Figure A2a plots the estimated location-bin fixed e!ects for a regression on subsidy

generosity for high-income and low-income tracts. Positive values on the X-axis repre-

sent tracts on the side of the border with more generous subsidies, and negative values

on the X-axis represent tracts on the side with less generous subsidies.43 Mechanically,

subsidy generosity for both groups sharply increases as we move to the side with more

43The regressions omit the location-bin fixed e”ect for the location bin nearest to the border on the
less generous subsidy side. We can, therefore, interpret these estimated location bin fixed e”ects as
the conditional average of subsidy generosity in a given location bin relative to this omitted bin.
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Figure A1: Distances to nearest border by census tract.

generous subsidies. The increase in subsidy generosity is larger for high-income tracts,

revealing that high-income tracts tend to be located around borders with larger di!er-

ences in subsidy generosity. Figure A2a plots the estimated location-bin fixed e!ects

for a regression on log production per capita for high-income and low-income tracts.

Taken together, the two graphs show that crossing borders from a state with less

generous subsidies to a state with more generous subsidies is associated with both

larger subsidy increases and larger production rate increases for high income tracts.

The reweighting procedure we utilize in Section 3.2 allows us to compare discontinuities

in log production across borders with consistent weights across low-income and high-

income regressions.

B.2 Border Discontinuities in Demographics and Household

Income

In this appendix, we plot average tract-level demographics and average income around

state borders. We categorize tracts into 10-mile-wide bins based on their location

relative to the border and regress various demographics on state-border fixed e!ects

and fixed e!ects for these location bins. Figure A3 plots these estimated location-bin

fixed e!ects for percent with average household income, college degree, and percent

democrat, respectively. There is no discontinuity in these characteristics as we cross to

the side of the border with more generous subsidies.
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(a) Subsidy Generosity (b) Log Production Per Capita

Figure A2: Border Discontinuities in Subsidy Generosity and Log Production per Capita without
Reweighting. The graph plots estimated location-bin fixed e”ects from a regression of subsidy gen-
erosity (Panel (a)) or log production per capita (Panel (b)) separately for high-income (orange) tracts
and low-income (green) tracts on border fixed e”ects and location-bin fixed e”ects. Positive values on
the X-axis represent households on the side of the border with more generous subsidies, and negative
values on the X-axis indicate the side of the border with less generous subsidies.

(a) Percent College Degree (b) Percent Democrat (c) Average Household Income

Figure A3: Border Discontinuities in Demographics and Household Income. Each graph plots estimated
location-bin fixed e”ects from a regression of the variable in question on border fixed e”ects and
location-bin fixed e”ects. Positive values on the X-axis represent households on the side of the border
with more generous subsidies, and negative values on the X-axis indicate the side of the border with
less generous subsidies.
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B.3 Full coe”cient tables

Table A1 reports all coe”cients for the specifications in Table 1.

B.4 Linear specification without border discontinuities

Here, we estimate the specification where the partial elasticity of solar production with

respect to subsidies varies linearly in log income using all census tracts. The first two

columns of Table A2 show the results. The second column, with division fixed e!ects,

suggests that a 1 cent per KWh increase in subsidies leads to a nearly 6.5 percent

increase in solar production per capita. The following two columns of Table A2 have

estimates of equation (3), where we specify that cost-e!ectiveness is linear in log income.

We have again “de-medianed” log income by subtracting the median log income level

from our log income variable. Using estimates from column 4, a 1 cent per-kWh increase

in subsidies is associated with a 7.3% increase in solar production per capita for a tract

at the median income level, and, consistent with our border discontinuity result, is

decreasing in income. The same 1 cent per-kWh subsidy increase is associated with

only a 5.1’% increase in solar production per capita for a tract at the 90th percentile of

income distribution. The empirical partial elasticity of solar production with respect

to subsidies for tracts at the median income level is 44 percent higher than the partial

elasticity for tracts at the 90th percentile income level—somewhat larger than our

border discontinuity result.

B.5 Robustness

Border Discontinuity Bandwith and Polynomial Degree In our main specifi-

cation, we use a border discontinuity with a bandwidth of 40 miles, with border fixed

e!ects interacted with 3rd degree polynomials in distance from the border. Figure A4

shows estimates using bandwidths between 20 and 100 miles and polynomials ranging

from degree 0 (just border fixed e!ects) to 5. The results are similar for all but the

smallest bandwidths.

Alternative Controls and Fixed E!ects for Nonlinear Specifications Our

main results include demographic controls and census division fixed e!ects. Figures A5

shows robustness to alternative fixed e!ects and omitting the demographic controls. We

show just the income spline specification for simplicity, but results are similar across
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Table A1: E”ect of Subsidies on Log Production per Capita

Border Polynomial Deg. 0 3 5

Bandwidth 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Constant -2.78 -3.85↓↓↓ -4.53↓↓↓ -2.31↓ -3.60↓↓↓ -3.32↓↓↓

(1.67) (1.41) (1.23) (1.22) (1.06) (1.17)
Subsidy 7.52↓↓↓ 8.28↓↓↓ 6.35↓↓↓ 7.03↓↓↓ 7.85↓↓↓ 7.78↓↓↓

(1.39) (1.51) (2.30) (2.30) (2.53) (2.44)
Log Income -0.342 -0.386 -0.181 -0.243 -0.239 -0.285

(0.207) (0.246) (0.170) (0.251) (0.177) (0.209)
Elec. Price -39.8 -46.0 -2.82 -21.8 -16.8 -21.5

(26.8) (32.5) (26.1) (33.6) (24.4) (25.6)
Solar Irradiance 1.13↓↓↓ 1.33↓↓↓ 0.992↓↓↓ 0.723↓↓↓ 0.855↓↓↓ 0.774↓↓↓

(0.372) (0.312) (0.242) (0.206) (0.234) (0.222)
Percent College 0.942↓↓↓ 1.08↓↓↓ 0.960↓↓↓ 1.10↓↓↓ 0.950↓↓↓ 1.04↓↓↓

(0.174) (0.152) (0.166) (0.140) (0.169) (0.137)
Percent Owner 0.319 0.259 0.219 0.168 0.213 0.115

(0.340) (0.252) (0.335) (0.251) (0.340) (0.249)
Percent Democrat 0.287 0.520↓ 0.212 0.438↓ 0.239 0.369

(0.370) (0.272) (0.389) (0.248) (0.372) (0.255)
dsire financing 0.262↓↓↓ 0.252↓↓↓ 0.126 0.216↓ 0.207 0.225

(0.065) (0.070) (0.130) (0.112) (0.147) (0.138)
dsire access 0.062 ↔9.65↘ 10↔5 -0.088 -0.042 -0.185↓ -0.080

(0.088) (0.093) (0.111) (0.109) (0.107) (0.113)
dsire building -0.074 -0.017 -0.091 -0.025 -0.212 -0.262

(0.127) (0.132) (0.218) (0.253) (0.142) (0.166)
Population Density -5.60↓↓↓ -5.60↓↓↓ -5.61↓↓↓ -5.48↓↓↓ -5.70↓↓↓ -5.68↓↓↓

(0.465) (0.439) (0.520) (0.471) (0.507) (0.458)
Population Density sq 2.31↓↓↓ 2.27↓↓↓ 2.33↓↓↓ 2.26↓↓↓ 2.35↓↓↓ 2.32↓↓↓

(0.254) (0.239) (0.281) (0.250) (0.271) (0.240)
Subsidy ↘ Log Income -1.44↓ -1.89↓↓ -1.82↓↓↓ -1.94↓↓ -2.07↓↓↓ -2.11↓↓↓

(0.717) (0.926) (0.425) (0.847) (0.449) (0.681)
Elec. Price ↘ Log Income 3.74 4.42 2.81↓ 3.40 3.69↓↓ 4.15↓↓

(2.41) (2.85) (1.67) (2.58) (1.68) (1.99)

Fit statistics
Observations 20,187 30,410 20,187 30,410 20,187 30,410
R2 0.49 0.49 0.55 0.55 0.56 0.56

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coe”cients from Equation (4). Sample is limited to tracts within either
40 or 80 miles bandwidths to state borders. All regressions include controls for
tract-level income, electricity prices, electricity prices interacted with income, solar
irradiance, population density and population density squared, a battery of tract-level
demographic measures, and border-specific polynomials in location relative to border.
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Table A2: E”ect of Subsidies on Log Production per Capita

Model: (1) (2) (3) (4)

Variables
Subsidy 4.67↓↓↓ 6.28↓↓↓ 5.51↓↓↓ 7.34↓↓↓

(1.49) (1.22) (1.70) (1.33)
Log Income -0.250 -0.405 -0.208 -0.356

(0.443) (0.435) (0.342) (0.350)
Population Density -5.46↓↓↓ -5.47↓↓↓ -5.50↓↓↓ -5.52↓↓↓

(0.522) (0.416) (0.528) (0.433)
Population Density sq 2.30↓↓↓ 2.32↓↓↓ 2.32↓↓↓ 2.34↓↓↓

(0.374) (0.325) (0.373) (0.330)
Percent College 0.384 0.463↓ 0.430 0.511↓

(0.297) (0.258) (0.293) (0.260)
Percent Owner 0.441 0.470 0.460 0.489

(0.334) (0.330) (0.340) (0.337)
Percent Democrat 0.983↓↓↓ 0.790↓↓↓ 0.951↓↓↓ 0.750↓↓

(0.256) (0.278) (0.258) (0.282)
Elec. Price -58.0 -71.9↓↓ -76.7↓↓ -93.9↓↓↓

(39.4) (34.3) (33.7) (25.8)
Solar Irradiance 1.44↓↓↓ 1.52↓↓↓ 1.45↓↓↓ 1.53↓↓↓

(0.256) (0.304) (0.259) (0.304)
Elec. Price ↘ Log Income 6.20↓ 7.18↓↓ 7.87↓↓↓ 9.12↓↓↓

(3.49) (3.21) (2.91) (2.39)
Subsidy ↘ Log Income -3.69↓↓↓ -4.23↓↓↓

(1.19) (1.02)

Fixed-e!ects
Region Yes Yes
Division Yes Yes

Fit statistics
Observations 49,010 49,010 49,010 49,010
R2 0.57 0.58 0.57 0.58
Within R2 0.35 0.34 0.35 0.34

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

10



Figure A4: Robustness of border discontinuity estimates to di”erent bandwidths and polynomial
degrees.

di!erent means of allowing the marginal e!ect of subsidies to vary by income level.

Adding controls and more refined fixed e!ects makes our results marginally stronger.

Controls for Other State Solar Policies A threat to identification in our border

discontinuity models is a change in other policies across state borders that a!ects house-

hold solar installation decisions. We gather data on other state-level policies related to

solar panels from DSIRE that are not monetary subsidies. We then count the number

of programs in each state split into three categories: financing, access rules, and build-

ing incentives.44 In addition to using the counts of policies, we also run models using

indicators for the presence of these policies.

Tables A3, A4, and A5 show results using a 40 mile bandwith and 0, 3rd, and 5th

degree border polynomials, respectively. The results are similar to our main models.

The coe”cient on the interaction between subsidies and log income remains very stable

across all of the DSIRE specifications. The coe”cient on subsidies—reflecting the

partial elasticity of installations with respect to subsidies for a tract with median log

income—does increase in some specifications. However, these partial elasticities are

never statistically significantly di!erent at the 5 percent level from that of our baseline

model without DSIRE controls.
44Financing are policies with labels of “Loan Program” and “PACE Financing” in DSIRE, access

are solar policies with labels of “Solar/Wind Access Policy” and “Solar/Wind Permitting Standards”,
and building incentives are policies with the label of “Building Energy Codes” and “Green Building
Incentives”
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Figure A5: Cost-e”ectiveness using production for di”erent controls and fixed e”ects.
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Table A3: E”ect on Log production per capita in border discontinuity model with additional DSIRE
solar policy controls. These estimates are from Equation (4) with Degree 0 border-specific polynomials
and a 40 mile bandwidth. All regressions include controls for tract-level income, electricity prices,
electricity prices interacted with income, solar irradiance, population density and population density
squared, and a battery of tract-level demographic measures.

Model: (1) (2) (3)

Variables
Subsidy 6.04↓↓↓ 7.52↓↓↓ 6.99↓↓↓

(0.949) (1.39) (1.51)
Subsidy ↘ Log Income -1.50↓↓ -1.44↓ -1.42↓

(0.704) (0.717) (0.760)
Count DSIRE financing 0.262↓↓↓

(0.065)
Count DSIRE access 0.062

(0.088)
Count DSIRE building -0.074

(0.127)
Has DSIRE financing 0.301↓↓↓

(0.092)
Has DSIRE access 0.097

(0.127)
Has DSIRE building -0.049

(0.196)

Fit statistics
Observations 20,187 20,187 20,187
R2 0.48 0.49 0.49
Adjusted R2 0.48 0.49 0.49

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A4: E”ect on Log production per capita in border discontinuity model with additional DSIRE
solar policy controls. These estimates are from Equation (4) with 3rd degree border-specific polynomi-
als and a 40 mile bandwidth. All regressions include controls for tract-level income, electricity prices,
electricity prices interacted with income, solar irradiance, population density and population density
squared, and a battery of tract-level demographic measures.

Model: (1) (2) (3)

Variables
Subsidy 4.31↓↓ 6.35↓↓↓ 6.78↓↓↓

(2.01) (2.30) (2.15)
Subsidy ↘ Log Income -1.76↓↓↓ -1.82↓↓↓ -1.83↓↓↓

(0.428) (0.425) (0.423)
Count DSIRE financing 0.126

(0.130)
Count DSIRE access -0.088

(0.111)
Count DSIRE building -0.091

(0.218)
Has DSIRE financing 0.231

(0.194)
Has DSIRE access -0.125

(0.136)
Has DSIRE building -0.257

(0.238)

Fit statistics
Observations 20,187 20,187 20,187
R2 0.55 0.55 0.55
Adjusted R2 0.54 0.54 0.54

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A5: E”ect on Log production per capita in border discontinuity model with additional DSIRE
solar policy controls. These estimates are from Equation (4) with 5th degree border-specific polynomi-
als and a 40 mile bandwidth. All regressions include controls for tract-level income, electricity prices,
electricity prices interacted with income, solar irradiance, population density and population density
squared, and a battery of tract-level demographic measures.

Model: (1) (2) (3)

Variables
Subsidy 3.57↓ 7.85↓↓↓ 7.98↓↓↓

(2.11) (2.53) (2.55)
Subsidy ↘ Log Income -2.02↓↓↓ -2.07↓↓↓ -2.08↓↓↓

(0.450) (0.449) (0.448)
Count DSIRE financing 0.207

(0.147)
Count DSIRE access -0.185↓

(0.107)
Count DSIRE building -0.212

(0.142)
Has DSIRE financing 0.314

(0.195)
Has DSIRE access -0.189

(0.167)
Has DSIRE building -0.482↓

(0.246)

Fit statistics
Observations 20,187 20,187 20,187
R2 0.54 0.55 0.55
Adjusted R2 0.52 0.53 0.53

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Alternative Outcomes We derive cost-e!ectiveness using production per capita as

the outcome of interest. Here, we explore robustness to di!erent outcome variables

that we could have also used to derive cost-e!ectiveness—counts of residential solar

installations and residential solar panels. Table A6 shows results for the same specifi-

cations as Table 1, but with log panels per capita as the outcome. Figure A6 shows the

robustness of these border discontinuity results for these alternative outcomes across

all bandwidths and polynomial degrees. Figures A7 and A8 demonstrate that the par-

tial elasticity of subsidies with respect to either of these alternative outcomes is also

decreasing in income when we use the nonlinear specifications and all census tracts.
Table A6: E”ect of Subsidies on Log Panels per Capita

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 7.52↓↓↓ 8.28↓↓↓ 6.35↓↓↓ 7.03↓↓↓ 7.85↓↓↓ 7.78↓↓↓

(1.39) (1.51) (2.30) (2.30) (2.53) (2.44)
Subsidy ↘ Log Income -1.44↓ -1.89↓↓ -1.82↓↓↓ -1.94↓↓ -2.07↓↓↓ -2.11↓↓↓

(0.717) (0.925) (0.425) (0.847) (0.449) (0.681)

Fit statistics
Observations 20,187 30,410 20,187 30,410 20,187 30,410
R2 0.49 0.48 0.55 0.54 0.48 0.55

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coe”cients from Equation (4). Sample is limited to tracts within either
40 or 80 miles bandwidths to state borders. All regressions include controls for
tract-level income, electricity prices, electricity prices interacted with income, solar
irradiance, population density and population density squared, a battery of tract-level
demographic measures, and border-specific polynomials in location relative to border.

Alternative Models Since installations are a count variable, we estimate a Poisson

model limiting to tracts that only have positive installations. Figure A9 shows results

using evenly spaced bins by log income. Our results are qualitatively unchanged.
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Figure A6: Robustness of border discontinuity model to alternative outcomes
(a) Log installations per capita

(b) Log panels per capita

Figure A7: Installations per capita measure of cost-e”ectiveness.

Colors show the results for di”erent manners of allowing the marginal e”ect of subsidies to vary
across income levels, all of which are estimated relative to median income: income bins are 11 bins
evenly spaced in log income, income deciles are based on national income distribution, splines are
cubic b-splines with 7 knots evenly spaced based on population weighted income, and log income.
Demographic, price, and solar controls and division fixed e”ects included in all regressions. Standard
errors are clustered by state.
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Figure A8: Panels per capita measure of cost-e”ectiveness.

Colors show the results for di”erent manners of allowing the marginal e”ect of subsidies to vary
across income levels, all of which are estimated relative to median income: income bins are 11 bins
evenly spaced in log income, income deciles are based on national income distribution, splines are
cubic b-splines with 7 knots evenly spaced based on population weighted income, and log income.
Demographic, price, and solar controls and division fixed e”ects included in all regressions. Standard
errors are clustered by state.

Figure A9: Installations modelled with a Poisson regression.

(a) Installations as outcome, bins in log income. (b) Installations as outcome, splines over income.
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B.6 Estimating Cost-E!ectiveness with Zero Production Tracts

Our main specification only includes tracts with positive solar production since it re-

quires taking the log of production as the outcome variable. However, about a quarter

of all census tracts have no residential solar installations in the Deepsolar data, repre-

senting about 21 percent of the US population. Here, we explore whether our focus on

tracts with positive production a!ects our conclusions on cost-e!ectiveness.

Consider a model where the expected solar production in a given tract is equal to the

probability the tract has positive solar production multiplied by the solar production

conditional on having positive production. Concretely, let Pε denote the probability a

tract ς has strictly positive solar panels, and let K̂ε denote the tract’s solar production

conditional on having a strictly positive number of solar panels. Expected solar pro-

duction in tract ς is therefore given by K̄ε = PεK̂ε. The partial elasticity of expected

solar production with respect to subsidies is then given by

ϑ log K̄ε

ϑsε
=

ϑ log K̃ε

ϑsε  
Intensive Margin

+
ϑPε

ϑsε

1

Pε  
Extensive Margin

.

Therefore, the partial elasticity of solar production is given by the sum of 1) the partial

elasticity of solar production conditional on positive production (“Intensive Margin”)

and 2) the partial elasticity of the probability of having positive installations (“Ex-

tensive Margin”). Note that the intensive margin is what we estimate in our baseline

regressions. If the extensive margin term is relatively small relative to the intensive

margin term, then the partial elasticity of expected solar production, including tracts

with zero production, will be similar to the partial elasticity of production conditional

on positive production that we estimate in our main specification. Further, if the exten-

sive margin term is decreasing in income, then the partial elasticity of expected solar

production will be more strongly decreasing in income than the partial elasticity of

production conditional on positive production.

We first examine how the term ωPϖ
ωsϖ

varies across the income distribution. Again

limiting our sample to tracts within 40 miles of state borders, we run linear probability

regressions of the following form:

I(Kε > 0) = ϖ
Ext

0
sε + ϖ

Ext

1
sε ↘ log Ŷε + x

→
ε
ωExt + g

Ext

ϑ
(Locε) + ϱ

Ext

ε
, (21)

where I(Kε > 0) indicates that there is positive solar production in tract ς, Yε is “de-
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medianed” average income in tract ς, sε is the generosity of subsidies available in tract

ς, and xε is a vector of controls. As before, we specify the g
Ext

ϑ
(Locε) functions as

border-specific polynomials. The main coe”cients of interest are ϖ
Ext

0
, which is our

estimate of ωPϖ
ωsϖ

for tracts at the median income level, and ϖ
Ext

1
, which determines how

ωPϖ
ωsϖ

varies as a function of income.

Table A7 reports parameter estimates from (21). Each column corresponds to a

di!erent specification, which vary in the degree of the polynomials in location relative

to the state border. Across all specifications, our estimates suggest that ωPϖ
ωsϖ

is decreasing

in income and small in magnitude compared to our baseline partial elasticity estimates

using tracts with positive production.
Table A7: E”ect of Subsidies on Probability of Positive Solar Production

Border Polynomial Deg. 0 3 5

Bandwidth (mi) 40 mi 80 mi 40 mi 80 mi 40 mi 80 mi
Model: (1) (2) (3) (4) (5) (6)

Variables
Subsidy 1.20↓↓↓ 1.30↓↓↓ 0.910↓↓↓ 1.31↓↓↓ 1.14↓↓↓ 1.19↓↓↓

(0.203) (0.222) (0.228) (0.243) (0.325) (0.351)
Subsidy ↘ Log Income -0.836↓↓↓ -0.989↓↓↓ -0.649↓↓↓ -0.853↓↓↓ -0.667↓↓↓ -0.837↓↓↓

(0.234) (0.248) (0.197) (0.236) (0.198) (0.226)

Fit statistics
Observations 29,308 44,209 29,308 44,209 29,308 44,209
R2 0.17 0.15 0.19 0.17 0.21 0.18

Clustered (State) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Estimates of coe”cients from Equation (4). Sample is limted to tracts within either
40 or 80 miles bandwidths to state borders. All regressions include controls for
tract-level income, electricity prices, electricity prices interacted with income, solar
irradiance, population density and population density squared, a battery of tract-level
demographic measures, and border-specific polynomials in location relative to border.

Similarly, the “Extensive Margin” panels of Figures A5, A7, and A8 show results

for various alternative specifications using an indicator for positive solar production as

the outcome. In each case, the results again suggest that ωPϖ
ωsϖ

is decreasing in income

and small in magnitude relative to our main results.

Next we examine how 1

Pϖ
varies across the income distribution. Let Pŷ denote the

fraction of tracts with positive solar production in income quintile ŷ. Figure A10 plots
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Figure A10: Inverse of proportion of tracts with positive solar production over income quintiles.

1

Pŷ
over income quintiles. 1

Pŷ
is decreasing in income quintile, ranging from 1.6 in the

first income quintile to 1.15 in the top quintile.

Taken together, these results show that the extensive margin is small relative to the

intensive margin partial elasticity, and that the extensive margin partial elasticity is

decreasing in income. This suggests that the partial elasticity of expected production,

accounting for tracts with zero production, is more strongly decreasing in income than

our baseline partial elasticity conditional on positive production.

C Structural Appendix

C.1 Derivation of Partial Elasticity of Installation with Re-

spect to Subsidies

The household value function conditional on installing solar panels is given by the

Lagrangian

V
m=1

i
= max

ci,ai

T∑

t=1

ϖ
t↔1

(c
it
)1↔ϖ

1↔ ↽
+ ⇀i ↔

T∑

t=1

µtgt (ait)↔
T∑

t=1

▷tht (cit, ait, ait+1)

where ci and ai are the vectors of household consumption levels and asset levels in all pe-

riods, gt (ait) denotes the borrowing inequality constraint in period t, and ht (cit, ait, ait+1)

denotes the budget equality constraint in period t.

Let V̄
m=1

i
= V

m=1

i
↔ ⇁εi denote household i’s value of installing panels less the

idiosyncratic preference draw. Note that V̄ m=1

i
is implicitly a function of subsidies. We
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can then write the probability of installation as

logPi =

(
1

⇁
V̄

m=1

i

)
↔ log

(
exp

(
1

⇁
V̄

m=1

i

)
+ exp

(
1

⇁

T∑

t=1

ϖ
t↔1

(cm=0

it
)1↔ϖ

1↔ ↽

))
.

Taking the derivative of logPi with respect to s
Upfront yields

ϑ logPi

ϑsUpfront
=

1

⇁

ϑV̄
m=1

i

ϑsUpfront
(1↔ Pi) . (22)

Using the notation from above, the first year’s borrowing equality constraint is

ht (ci1, ai1, ai2) = ci1 + ai2 +mip
Ins

j
(Ni)

↔
(
yi ↔ ↼ (yi) + (1 + r) ai1 +mi

(
NiAitpj + s

Upfront

i

(
p
Ins

j
(Ni) , ↼ (yi)

)
+ s

Flow

i

(
p
Ins

j
(Ni) , Ait

)))
.

Therefore, the first-order condition of the Lagrangian with respect to c1 yields

(
c
m=1

i1

)↔ϖ

= ▷1. (23)

Further, by the envelope theorem, we know what

ϑV̄
m=1

i

ϑsUpfront
=

ϑV
m=1

i

ϑsUpfront
= ▷1. (24)

Combining equations (22), (23), and (24) yields

ϑ logP

ϑsUpfront
=

(cm=1

i1
)↔ϖ

⇁
(1↔ Pi) .

C.2 Additional Data and Estimation Details

Interest and Discount Rates We follow Sexton et al. (2021) and set a real interest

rate of 5% and assume panels have a life of 20 years. We also set T = 20. We assume a

household discount rate of ϖ = 1

1+r
. De Groote and Verboven (2019), who estimate a

discount factor by estimating responses of residential solar demand to the introduction

of a generous subsidy for future solar production in Belgium. They find that households’

implicit real interest rate in evaluating future benefits greatly exceeds the real market

interest rate. It would be straightforward to repeat our analysis with alternative values

of the household discount rate.
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Installation Size We parameterize the number of panels conditional on installation

as Ni = ◁Xi, where ◁ is a vector of parameters to be estimated and Xi is a vector in-

cluding a constant term, household income, and tract-level college and democrat share.

We estimate the vector of parameters ◁ jointly with the other structural parameters.

Federal Income Taxes For the federal income tax function ↼ (yi), we utilize the

functional form used by Heathcote, Storesletten, and Violante (2017), which has been

shown to e!ectively replicate many features of the US income tax code.45 The functional

form for the total tax burden is given by

↼ (yi) = yi ↔ ▷y
1↔↽

i
,

where ↼ is a parameter that dictates the progressivity of the tax schedule, and ▷ is

a parameter that dictates the overall level of taxes. We use the values of ↼ and ▷

estimated by Guner, Kaygusuz, and Ventura (2014), who estimate these parameters

using microdata from the IRS. We use their estimates for all married households.

Subsidies We use data on subsidies Sexton et al. (2021), which are assembled from

data from the Database of State Incentives for Renewables & E”ciency (DSIRE). We

assume that upfront subsidies are given by the sum of subsidies from state and federal

investment tax credits and sales tax rebates. We assume that flow subsidies are given

by the sum of solar renewable energy certificates, other production-based subsidies, and

property tax rebates.

Formally, let sFed denote the portion of the Federal Investment Tax Credit that is

refundable in year 1. This refundable portion equals the minimum of the household’s

tax burden and 30% of the cost of installation. We can write this as

s
Fed = max


0,min


0.3pIns

j
(Ni) , ↼ (yi)


.

Let s
Cost

j
denote state cost-based subsidies—subsidies which pay a fraction of the

cost of installation, let SalesTaxRebatej be a dummy variable indicating state j o!ers

a sales tax exemption, and let SalesTaxRatej denote the average sales tax in state j.

We can write
45See e.g. Guner, Kaygusuz, and Ventura (2014).
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s
Upfront

i
= p

Ins

j
(Ni)↘

(
s
Cost

j
+ SalesTaxRebatej ↘ SalesTaxRatej

)
+ s

Fed
. (25)

Let s
Kwh

j
denote the production-based subsidies, subsidies which pay per kWh of

electricity produced, let PropTaxRebate
j
be a dummy variable indicating state j o!ers

a property tax exemption, and let PropTaxRate
j
denote the average property tax rate

in state j. Flow subsidies are given by

s
Flow

it
= (1↔ ω)t↔1

p
Ins

j
(Ni)↘ PropTaxRebate

j
↘ PropTaxRate

j
+ s

Kwh

j
NiAit

where ω is the depreciation rate of solar panels.

C.3 Construction of Tract-Level Income Distributions

We construct tract-level income distributions for homeowners in two steps. In the

first step, we construct tract-level income distributions for all households, including

non-homeowners, using tract-level data on average household income, Gini coe”cient,

and number of households. In the second step, we estimate the joint distribution

between homeownership rates and income using household-level data from the 2015

ACS. We then combine these estimates of homeownership rates with our tract-level

income distributions to construct tract-level income distributions for homeowners.

More specifically, in the first step, we assume household income in each tract follows

a log-normal distribution and choose the mean and variance of each tract’s income

distribution to match the tract’s average income and Gini coe”cient.46 This allows us

to construct the unconditional household income distribution for each tract in our data.

In the second step, we estimate the relationship between household income and the

probability that a household is a homeowner separately for each state. Letting Owni

denote that a given household i in the ACS owns their home, we regress

Owni = fs (yi) + ϱi

where yi is household i’s income, and fs (yi) is state-specific linear spline in household

46Numerous studies find that the income distribution in the United States is approximately log-
normal (see e.g. Battistin, Blundell, and Lewbel (2009).)
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income with knots at 10, 20, 30, 50, 75, 100, 150, and 200 thousand dollars. We then

take each household in the model’s predicted value from these regressions to calculate

the probability that they are a homeowner. This gives us the joint distribution of

income and homeownership.

Finally, we multiply the unconditional distribution of income across tracts uncon-

ditional distribution of income across tracts constructed in the first step with this

homeownship probability to construct our tract-level income distributions conditional

on homeownership.

C.4 Ordered Logit Model of Initial Assets

We discretize the initial asset distribution into N = 20 mass points ranging from the

minimum asset level, ā, to ā+1, 000, 000. Let n = 1, ..., N index mass points, and let ân

denote the asset level associated with the nth mass point. We assume the probability

that household i has initial assets associated with the nth mass point takes the form of

ordered logit probabilities. Therefore, the probabilities that household i is associated

with each discrete asset level are given by

Pri (âN) =
exp (a↼

i
↔ 0N↔1)

1 + exp (a↼
i
↔ 0N↔1)

Pri (ân) =
exp (a↼

i
↔ 0n↔1)

1 + exp (a↼
i
↔ 0n↔1)

↔ exp (a↼
i
↔ 0n)

1 + exp (a↼
i
↔ 0n)

for n = 2, ...M ↔ 1

Pri (â1) = 1↔ exp (a↼
i
↔ 01)

1 + exp (a↼
i
↔ 01)

where a↼
i
= ωyi denotes the expected latent initial assets of household i, ω is a parameter

to be estimated, yi is household income, and 0’s are cut points to be estimated. We

constrain that the 0’s to be linear in asset levels

0n = ⇀0 + ⇀1ân.

We estimate the ω and ⇀ parameters via indirect inference jointly with the structural

parameters.
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Estimate Standard Error
Dispersion of Idiosyncratic Utility ⇁ 2.54 0.26
Curvature of Utility ↽ 0.35 0.05

Nonpecuniary Value of Installations
Constant ⇀0 -8.97 0.96
Percent College ⇀Coll 3.28 0.65
Percent Democrat ⇀Pol -2.32 0.57

Size of Installation Parameters
Constant ◁0 15.36 1.54
Percent College ◁Coll -2.32 0.30
Percent Democrat ◁Pol -5.42 0.55
Demeaned Log Income ◁Inc 0.96 0.15

Table A8: Parameter estimates. Bootstrap standard errors in parenthesis.

C.5 Parameter Estimates

Table A8 shows the estimates of the structural parameters with bootstrapped standard

errors.

C.6 Additional Model Fit

Table A9 presents the fit for targeted moments. The model overpredicts the relation-

ship between college share and installations and underpredicts the relationship between

average tract income and percent democrat but fits relatively well overall.

C.7 Comparison to Existing Literature

We further assess model validity by simulating natural experiments that design-based

papers on solar installation have studied.

Colas and Reynier (2024) estimate demand for solar panels using a border-discontinuity

approach that exploits variation in subsidies on either side of state borders. Their esti-

mates imply that a 1,000 increase in subsidies for solar panels leads to roughly an 9%

increase in solar panel installations. Simulating a 1,000 increase in subsidies for solar

panels in our model leads to a 10.5% increase in installations in our model.

Hughes and Podolefsky (2015) study the e!ect of the California Solar Initiative

rebates by exploiting variation in rebate rates across utility companies. They find that

a 470 increase in total rebate leads to a 10% increase in installations. We replicate this

experiment in our model by providing additional upfront subsidies of 470 to California
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Moment Data Simulation
I. Regression of log panels on subsidies and subsidies interacted
with log income, controlling for tract characteristics

Coe”cient on subsidies 5.33 5.35
Coe”cient on subsidies↘log income -1.92 -1.96

II. Regression of panels per capita on demeaned log income
Coe”cient on demeaned log income 0.25 0.24
Constant 0.21 0.21

III. Average panels per capita across income distribution
Income quintile 1 0.07 0.09
Income quintile 2 0.13 0.14
Income quintile 3 0.19 0.19
Income quintile 4 0.28 0.26
Income quintile 5 0.40 0.38
Income over 120 thousand 0.41 0.42

IV. Regression of average installation size on characteristics
Constant 15.73 15.73
Coe”cient on college education -2.21 -2.21
Coe”cient on democrat -5.57 -5.57
Coe”cient on demeaned log income 0.64 0.65

V. Regression of panels per capita on percent college education
Coe”cient on college education 0.17 0.47
Constant 0.22 0.21

VI. Regression of panels per capita on percent Democrat
Coe”cient on democrat 0.06 0.01
Constant 0.22 0.22

Table A9: Model fit of targeted moments. The column “Data” gives the value of the moment in the
data, while “Simulated” gives the moment calculated in the estimated model.
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households. We find this leads to a 4.6% increase in installations in California.

Crago and Chernyakhovskiy (2017) estimate the responsiveness of solar installations

to rebates using panel data from the US Northeast and find that increasing rebates by

1 per watt increases solar panel installations by 47%. We simulate providing the same

rebate in these 12 states and find that total installations increase by 44%.

Gillingham and Tsvetanov (2019) estimate the price elasticity of demand for solar

panel installations using data from Connecticut and an instrumental variable approach

that accounts for excess zeros and unobserved heterogeneity. They find a price elasticity

of demand evaluated at the mean installation price equal to -0.65. We simulate the

e!ects of increasing installation prices for households in Connecticut by 1000 and

calculate the implied elasticity. We find an elasticity of demand evaluated at the mean

installation price of -0.82.

C.8 Estimation of Marginal Damages of Electricity Produc-

tion by NERC Region

Let DIt denote total environmental damages from electricity production for all plants

located within interconnection I in a given hour t. Our estimating equation is given by

DIt =
∑

R↗RI

ϖRLoadRt + 1mh + ϱt,

where R indexes NERC regions, RI is the set of NERC regions in interconnection I,

LoadRt is total load in region R in hour t, and 1mh are month-by-hour fixed e!ects. We

restrict our sample to 8 AM to 6 PM so that we only measure the marginal damages

associated with daytime energy production. The ϖR’s are the coe”cients of interest

and measure the marginal damages associated with additional electricity load in region

R.

We use data assembled by Holland et al. (2020), who use data on individual power

plant production and emissions levels from 2010-2017 from the EPA’s Continuous Emis-

sions Monitoring System. Damages are measured as the sum of environmental damages

from CO2 and local pollutant emissions. To measure damages associated with CO2

emissions, the authors assume a social cost of carbon valued at 35.56 per metric ton of

CO2 in 2010, which grows at 3 percent annually. To measure environmental damages

associated with the emissions of local pollutants, the authors use the AP3 integrated

assessment model, which calculates the damages associated with individual pollutants
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Figure A11: Model-Based Decomposition: All Households. The graph shows the average number of
installations per household, including non-homeowners, across deciles of household income over various
model specifications. See text for details on each specification.

at the plant level.

C.9 Additional Decomposition Results

Figure A11 repeats the decomposition exercise from Section 4.1 but displays installa-

tions per household rather than installations per homeowner. Figure A12 repeats the

decomposition exercise from Section 4.1, except we do each modification to the model

individually rather than cumulatively. Again, the main conclusion is that borrowing

constraints and the nonrefundable Federal Investment Tax Credit play important roles

in explaining the strong positive relationship between installations and income.

Figure A13 plots the number of marginal installations across deciles of household

income under various model specifications. The solid red line shows the number of

marginal households in the baseline model. The number of marginal households is

initially increasing in income before decreasing. The remaining lines sequentially remove

the influence of prices, subsidies, and solar irradiance (black dashed line); make the

Federal Investment Tax Credit Refundable (blue dash-dotted line); remove borrowing

constraints (cyan dashed line); equalize preferences (solid magenta line); and equalize

income (dotted green line).
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(a) Remove Spatial Factors (b) Make FITC Refundable

(c) Remove Borrowing Constraints (d) Equality Preferences

(e) Equalize Income

Figure A12: Alternative model decomposition results.
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Figure A13: Model-Based Decomposition: Marginal Installations. The graph shows the average num-
ber of marginal installations per home across deciles of household income over various model specifi-
cations. See text for details on each specification.

C.10 Production-Maximizing Optimality Conditions

Let I denote the set of all households, let Pi|a denote the probability household i installs

panels conditional on having initial assets a, and let Pri (a) denote the probability

household i has initial asset level a. The government’s problem is to maximize solar

production ∫

i↗I

∫
Pri (a)Pi|aNiAidadi

subject to the constraint that

∫

i↗I

∫
Pri (a)Pi|asidadi ⇐ C,

where C is the exogenously-set government budget, and si is the present discounted

value of subsidies received by household i conditional on installing solar panels. We can

write the government’s problem as the Lagrangian:

max

∫

i↗I

∫
Pri (a)Pi|aNiAidadi↔ ▷

(∫

i↗I

∫
Pri (a)Pi|asidadi↔ C

)
,

where ▷ is the government’s Lagrange multiplier. Let s
Inc (ŷ) denote the income-

contingent subsidy for households with income level ŷ. Taking the first-order condition
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with respect to s
Inc (ŷ) yields

∫

i↗I(ŷ)

∫
Pri (a)

ϑPi|a

ϑsInc (ŷ)
NiAidadi↔

▷

(∫

i↗I(ŷ)

∫
Pri (a)

ϑPi|a

ϑsInc (ŷ)
sidadi+

∫

i↗I(ŷ)

∫
Pri (a)Pi|adadi

)

where I (ŷ) is the set of households with income level ŷ.

LetM (ŷ) =

i↗I(ŷ)


Pri (a)Pi|adadi denote the total number installations by house-

holds with income level ŷ. We can then rewrite the government’s optimality condition

as
ϑM (ŷ)

ϑsInc (ŷ)
↘

(
s̄ (ŷ)↔ 1

▷
NA (ŷ)

)
+M (ŷ) = 0.

The term ωM(ŷ)

ωsInc(ŷ)
gives the derivative of installations of households with income level

(ŷ). These marginal installations increase government costs, as these households now

receive subsidies. This marginal cost is captured by s̄ (ŷ), which gives the average

subsidy received across all marginal households. This is formally given by

s̄ (ŷ) =


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

sidadi


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

dadi

.

These marginal households are also associated with additional solar production. This

is captured by the term NA (ŷ), which gives the average solar output per installation

for these marginal households. This term is formally given by

NA (ŷ) =


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

NiAidadi


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

dadi

.

Finally, households at income level ŷ who already choose to install panels given the

current levels of subsidies would receive additional subsidies if the government increased

s
Inc (ŷ). The additional government cost associated with more generous subsidies for

these inframarginal households is captured by the term M (ŷ).
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C.11 Environmental-Benefit-Maximizing Subsidies

Optimality Conditions Let Bi denote the environmental benefits associated with

one kWh of solar electricity produced by household i. Let I denote the set of all

households, let Pi|a denote the probability household i installs panels conditional on

having initial assets a, and let Pri (a) denote the probability household i has initial

asset level a. The government’s problem is to maximize environmental benefits,

∫

i↗I

∫
Pri (a)Pi|aNiAiBidadi

subject to the constraint that

∫

i↗I

∫
Pri (a)Pi|asidadi ⇐ C,

where C is the exogenously set government budget, and si is the present discount value

of subsidies received by household i conditional on installing solar panels.

Similar to Appendix C.10, we can then write government’s optimality condition as

ϑM (ŷ)

ϑsInc (ŷ)
↘

(
s̄ (ŷ)↔ 1

▷
NAB (ŷ)

)
+M (ŷ) = 0.

The term ωM(ŷ)

ωsInc(ŷ)
gives the derivative of installations for households with income level

(ŷ). The marginal cost associated with providing subsidies to these households is cap-

tured by s̄ (ŷ), which gives the average subsidy received across all marginal households

and is formally given by

s̄ (ŷ) =


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

sidadi


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

dadi

.

These marginal households are also associated with additional environmental benefits.

This is captured by the term NAB (ŷ), which gives the average environmental benefits

per installation for these marginal households. This term is formally given by

NAB (ŷ) =


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

NiAiBidadi


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

dadi

.

Finally, the additional government cost associated with more generous subsidies for
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(a) Average Subsidy (b) Panels per Household

Figure A14: The figure on the left shows the average present discounted value of subsidies received for
an installation across income levels under various subsidy schemes. The figure on the right shows the
average panels per household across income levels under these same subsidy schemes.

these inframarginal households is captured by the term M (ŷ).

Results To measure Bi, the marginal benefits associated with one kWh of solar elec-

tricity produced by household i, we estimate NERC-region level marginal damages of

electricity production using data from Holland et al. (2020). We describe this estimation

procedure in Appendix C.8.

Table A10 shows the results. Each column presents subsidy levels, installation rates,

total solar production, and total environmental benefits under a given subsidy scheme.

The first column presents these statistics under the current subsidy scheme, the sec-

ond column presents the production-maximizing subsidy scheme, and the third column

presents the environmental-benefits-maximizing subsidy scheme. The optimal subsidy

schemes, distribution of installations, production levels, and environmental benefits are

very similar for the production-maximizing and environmental-benefit-maximizing sub-

sidy schemes. The environmental-benefit-maximizing subsidy scheme leads to a 3.9%

increase in environmental benefits of residential solar relative to the current subsidy

scheme.

C.12 Lower Installation Prices

Figure A14a shows the production-maximizing subsidy schedule given current instal-

lation prices (dotted blue line), and production-maximizing subsidy schedule given

that installation prices are 50% of current prices (black dashed line). The production-

maximizing subsidies with lower installation prices are still strongly decreasing in in-
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(1) (2) (3)
Prod Benefit

Baseline Max Max
I. Production per HH

Income Q1 13.2 33.4 32.0
Income Q2 48.5 64.3 63.9
Income Q3 80.2 80.4 81.6
Income Q4 123.5 96.7 97.0
Overall 68.2 69.8 69.8

II. Subsidy Generosity ( 1000s)
Income Q1 8.1 12.0 11.9
Income Q2 9.3 11.4 11.4
Income Q3 9.8 9.8 10.0
Income Q4 10.4 6.9 7.0

III. Relative Production 100.0 102.4 102.3

IV. Relative Benefits 100.0 102.3 102.3

Table A10: Environmental-Benefit-Maximizing Subsidies. Panel I shows the average yearly solar
capacity in kWh per household in each income quartile. Panel II shows the average subsidy a household
from each income quartile would receive for a solar installation. Panel III shows the total solar
production. We scale total production under the baseline simulation to 100. Panel IV shows the
total environmental benefits of solar panels. We scale the environmental benefits under the baseline
simulation to 100.
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come but are lower than optimal subsidies given current prices. With lower installation

prices, subsidies per household under the current subsidy scheme are lower than with

current prices, because the government pays less cost-based subsidies. Since the optimal

subsidies are cost neutral, optimal subsidies with lower prices are lower than optimal

subsidies with current prices.

Figure A14b shows panels per households given current installation costs and the

corresponding production-maximizing subsidies (dotted blue line), and panels per house-

holds given 50% of current installation costs and the corresponding production-maximizing

subsidies (black dashed line). Decreasing installation costs leads to an increase in in-

stallation rates across the board, but especially for low income households.

C.13 Welfare-Maximizing Subsidies

Let Bi denote the environmental benefits associated with one kWh of solar electricity

produced by household i and let Vi|a denote the lifetime utility of household i conditional

on having initial assets a. The government’s problem is to maximize

∫

i↗I

∫
Pri (a)Pi|aVi|adadi

  
Utilitarian Welfare

subject to the constraint that

∫

i↗I

∫
Pri (a)Pi|asidadi

  
Fiscal Cost

↔
∫

i↗I

∫
Pri (a)Pi|aNiAiBidadi

  
Environmental Benefit

⇐ C,

where C is the exogenously set maximum net cost.

We can write the constrained welfare maximizing problem as the Lagrangian

maxW =

∫

i↗I

∫
Pri (a)Vi|adadi

  
Utilitarian Welfare

↔

▷





∫

i↗I

∫
Pri (a)Pi|asidadi

  
Fiscal Cost

↔
∫

i↗I

∫
Pri (a)Pi|aNiAiBidadi

  
Environmental Benefit

↔C



 , (26)

where ▷ is the government’s Lagrange multiplier.
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The system of optimal subsidies must satisfy the government’s first-order conditions,

which implies

∫

i↗I

∫
Pri (a)

ϑVi|a

ϑsInc (ŷ)
dadi↔

▷

(∫

i↗I

∫
Pri (a)

(
ϑPi|a

ϑsInc (ŷ)
(si ↔NiAiBi) + Pi|a

)
dadi

)
= 0. (27)

Again let M (ŷ) =

i↗I(ŷ)


Pri (a)Pi|adadi denote the total number installations

by households with income level ŷ. We can then rewrite the government’s optimality

condition as

∫

i↗I

∫
Pri (a)

ϑVi|a

ϑsInc (ŷ)
dadi+ ▷

(
ϑM (ŷ)

ϑsInc (ŷ)
↘
(
NAB (ŷ)↔ s̄ (ŷ)

)
↔M (ŷ)

)
= 0.

The term ωM(ŷ)

ωsInc(ŷ)
gives the derivative of installations of households with income level (ŷ).

These marginal installations lead to environmental benefits but also increase govern-

ment cost. This government cost is captured by s̄ (ŷ), which gives the average subsidy

received across all marginal households. This is formally given by

s̄ (ŷ) =


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

sidadi


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

dadi

.

The increase in environmental benefits is given by NAB (ŷ), which gives the average

environmental benefits of marginal installations for income level ŷ. This is formally

given by

NAB (ŷ) =


i↗I


Pri (a)

ωPi|a
ωsInc(ŷ)

NiAiBidadi


i↗I


Pri (a)

ωPi|a
ωs

Inc
j (ŷ)

dadi

.

Using the envelope theorem, we know that

ϑVi|a

ϑs
Inc

j
(ŷ)

= Pi|a
ϑui

ϑci1

(
c
m=1

i1|a
)

where ωui
ωci1

(
c
m=1

i1|a

)
gives the marginal utility of consumption with respect to consump-

tion in year 1, evaluated at the optimal consumption level in year 1 conditional on

installation and having initial asset level a.

We can then write the government’s optimality condition in a similar form to that
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in Colas, Findeisen, and Sachs (2021) as

ϑM (ŷ)

ϑsInc (ŷ)
↘

(
NAB (ŷ)↔ s̄ (ŷ)

)
↔M (ŷ)

(
1↔ W̄ (ŷ)

)
= 0,

where W̄ (ŷ) gives the money-metric average social welfare weights of households of

income group ŷ who install solar panels. This is formally given by

W̄ (ŷ) =
1

▷


i↗I


Pri (a)Pi|a

ωui
ωci1

(
c
m=1

i1|a

)
dadi


i↗I


Pri (a)Pi|adadi

.

Intuitively, this gives the average social welfare increase associated with an additional

unit of consumption for households who already choose to install solar panels.

C.14 Stochastic Income Details

C.14.1 Model Details

Timing Households begin the model with an initial persistent component of income

zi0. At the beginning of the model, they receive their idiosyncratic preferences for

panels, εi, and make a once and for all decision of whether to install solar panels

(mi → {0, 1}).
After making this decision, households receive the persistent and transitory earnings

shocks, εit, and ϱit. Households then make a consumption and savings decision, taking

an expectation over future earnings shocks. Each year, households continue to receive

that year’s two shocks and make consumption and earnings decisions.

Model Solution Let Vit (%it, εit, ϱit) denote household i’s value function in period

t, conditional on state space %it, and earnings εit, and ϱit. The state space consists

of lagged value of the persistent component, zit↔1, assets ait, the amount of carried

over federal tax credits sCarry

i
, value of electricity produced

(
miNiAi

(
pj + s

kwh

j

))
, and

amount of property tax rebate. Note that this value function can be used for both

households who choose to install solar panels and for those who do not by setting the

appropriate state space variables to 0.

After making the initial installation decision, the household’s value function is given
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by

Vit (%it, εit, ϱit) = max
cit

(cit)
1↔ϖ

1↔ ↽
+ ϖE [Vit+1 (%it+1, εit+1, ϱit+1|cit)]

subject to the budget constraint ((7) and (8)) and the borrowing constraint (9). The

expectation is taken over εit+1 and ϱit+1.

Let %m=0

i1
denote the individual’s state space in year 1 conditional on not installing

solar panels, and let %m=1

i1
denote the state space conditional on installing solar panels.

The household chooses to install solar panels if

E
[
Vit

(
%m=1

i1
, εi1, ϱi1

)]
+ ⇀i ≃ E

[
Vit

(
%m=0

i1
, εi1, ϱi1

)]
.

Given that εi has a logit distribution, the probability household i installs solar panels

is given by

Pi =
exp

(
1

ϱ
E [Vit (%m=1

i1
, εi1, ϱi1)] + ⇀̄i

)

exp
(
1

ϱ
E [Vit (%m=1

i1
, εi1, ϱi1)] + ⇀̄i

)
+ exp

(
1

ϱ
E [Vit (%m=0

i1
, εi1, ϱi1)]

) .

Calibration We set ⇁ς = 0.022, ⇁φ = 0.057, and ρ = 0.984, based on the estimates

from Panel B of Table 1 from Storesletten, Telmer, and Yaron (2004). We assume the

initial value of the persistent component of earnings, zi0, follows a normal distribution

with tract-specific means and variances such that income in year 1 also follows a log-

normal distribution. We choose the tract-specific means and variances of zi0 such that

the income distribution in year t = 1 matches tract-level average income and Gini

coe”cients.

We assume that the income-contingent subsidies are awarded based on a household’s

income in year t = 0. We assume there is no transitory income shock in year 0 such

that log yi0 = zi0.

C.14.2 Results

Table A11 presents the parameter estimates for the model with stochastic income. The

parameter estimates are similar to the baseline estimates.

Figure A15 shows model fit. The first panel shows panels per household across

percentiles of tract-level income in the model and data. The red line shows the panels

per household in the data while the black dashed line shows the simulated panels from

the estimated model. The second panel shows partial elasticities across income levels

in the model and data. These are estimated using the same set of controls as Figure 4.
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Estimate
Dispersion of Idiosyncratic Utility ⇁ 2.51
Curvature of Utility ↽ 0.35

Nonpecuniary Value of Installations
Constant ⇀0 -8.56
Percent College ⇀Coll 2.84
Percent Democrat ⇀Pol -2.05

Size of Installation Parameters
Constant ◁0 15.32
Percent College ◁Coll -2.33
Percent Democrat ◁Pol -5.52
Demeaned Log Income ◁Inc 1.01

Table A11: Parameter estimates for model with stochastic income

(a) Income (b) Partial Elasticity

Figure A15: Model Fit: Stochastic Income. Panel (a) shows panels per household across percentiles
of tract-level income in the model and data. The red line shows the panels per household in the data,
while the black dashed line shows the simulated panels from the estimated model. These are estimated
using the same set of controls as Figure 4.
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(1) (2) (3)
Prod Utility

Baseline Max Max
I. Production per HH
Income Q1 5.1 19.7 28.9
Income Q2 52.6 65.6 69.7
Income Q3 81.4 84.8 81.6
Income Q4 125.4 102.4 93.1
Overall 68.1 69.6 69.5

II. Subsidy Generosity ( 1000s)
Income Q1 8.0 11.7 13.3
Income Q2 9.3 11.1 11.6
Income Q3 9.8 10.2 9.8
Income Q4 10.4 7.7 6.5

III. Relative Production 100.0 102.1 102.0

Table A12: Results: Stochastic Income. Panel I shows the average yearly solar capacity in kWh per
household in each income quartile. Panel II shows the average subsidy a household from each income
quartile would receive for a solar installation. Panel III shows the total solar production. We scale
total production under the baseline simulation to 100.

Table A12 has the main results with stochastic income. The optimal subsidy

schemes, distribution of installations, and production levels are similar to those un-

der the baseline model.

41


	Introduction
	Reduced-Form Analysis
	Cost-Effectiveness and Means-Tested Subsidies
	Data and Descriptive Results
	Empirical Strategy
	Reduced-Form Results

	Quantitative Model and Estimation
	Model
	Data
	Estimation
	Model Fit

	Counterfactuals
	Why are Installations Increasing in Income?
	Introducing Income-Contingent Subsidies
	Production-Maximizing Subsidies
	Welfare-Maximizing Subsidies
	Upfront Vs. Flow Subsidies

	Robustness and Additional Results
	Stochastic Income
	Alternative Borrowing Limits
	Maximizing Environmental Benefit
	Lower Installation Prices

	Conclusion
	Theoretical Appendix
	Proof of Proposition 1
	Production-Maximizing Subsidy Schedule in General Model
	Tract-Level Elasticities

	Reduced-Form Appendix
	Non-Reweighted Border Discontinuities in Subsidy Generosity and Log Production per Capita
	Border Discontinuities in Demographics and Household Income
	Full coefficient tables
	Linear specification without border discontinuities
	Robustness
	Estimating Cost-Effectiveness with Zero Production Tracts

	Structural Appendix
	Derivation of Partial Elasticity of Installation with Respect to Subsidies
	Additional Data and Estimation Details
	Construction of Tract-Level Income Distributions
	Ordered Logit Model of Initial Assets
	Parameter Estimates
	Additional Model Fit
	Comparison to Existing Literature
	Estimation of Marginal Damages of Electricity Production by NERC Region
	Additional Decomposition Results
	Production-Maximizing Optimality Conditions
	Environmental-Benefit-Maximizing Subsidies
	Lower Installation Prices
	Welfare-Maximizing Subsidies
	Stochastic Income Details
	Model Details
	Results



